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Abstract: We introduce a deep learning system for automatic floorplan generation from layout graphs. Our system 

combines generative modeling with user-in-the-loop design in which users can add sparse constraints like room numbers, 

connectivity, and other layout adjustments. The system relies on a core deep neural network that takes an input building 

boundary and layout graph to generate realistic and constraint-abiding floorplans. The system utilizes a graph neural 

network (GNN) to encode layout patterns and convolutional neural networks (CNNs) for processing building contours 

and rasterized floorplan images. The model, trained on RPLAN, a 80K-annotated floorplan dataset, outputs varied 

floorplan layouts consistent with user inputs. We measure its performance via qualitative and quantitative analysis, 

ablation experiments, and comparison against state-of-the-art techniques, proving its effectiveness and flexibility in 

floorplan synthesis with constraints. 
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I.INTRODUCTION 

 

Artificial intelligence (AI) and machine learning (ML) are revolutionizing the discipline of architectural design, providing 

creative solutions that improve efficiency, creativity, and scalability. With increasingly sophisticated architectural 

projects, AI-based generative models offer architects effective tools to streamline design processes without compromising 

aesthetic and functional quality. One of the most basic elements of architectural design is the development of floor and 

building plans, which determine spatial arrangement, functionality, and overall usability. Floorplan generation 

automation has attracted considerable attention from computer graphics and vision researchers, resulting in improved 

data-driven modeling methods. Current research has investigated numerous methods, such as raster-to-vector conversion, 

floorplan reconstruction from 3D scans, and AI-driven layout generation, all of which help in an improved, streamlined, 

and efficient design process. 

 

In this paper, we present a deep learning-based system for automatic floorplan generation that combines generative 

modeling with user-in-the-loop design approaches. Conventional design methodologies tend to involve significant 

manual intervention, making them less scalable and flexible. Our method seeks to overcome these challenges by allowing 

users to specify high-level design constraints—e.g., room numbers, adjacency relationships, and functional 

requirements—that inform the generative process. These constraints are most naturally represented as layout graphs, a 

formal representation of spatial information similar to scene graphs employed in image composition. By incorporating 

layout graphs, our framework ensures that user-defined preferences are maintained while allowing for the generation of 

diverse and adaptive floorplans. 

 

A key aspect of our system is the utilization of a large-scale dataset of human-designed floorplans, which serves as the 

foundation for training our generative model. This dataset allows the model to learn about architectural principles and 

spatial relationships so that the output designs conform to real-world usability and aesthetic requirements. The framework 

accommodates both automatic and interactive design processes: users can either let the system generate floorplans 

automatically or improve the output by modifying the query layout graph. Such versatility renders our methodology 

applicable to an extensive variety of uses, such as architectural design and urban development, game planning, virtual 

worlds, and property visualization. 

 

We utilize deep neural networks, viz., graph neural networks (GNNs) and convolutional neural networks (CNNs), in our 

generative model for processing input restrictions and generating good-quality, vectorized floorplans. The architecture 

takes a sequential pipeline where the initial layout graph is obtained or created, then passed through deep learning models 

and further processed to maintain spatial coherence and functional viability. The synthesized floorplans are highly 

flexible with the ability to investigate different design options while respecting user-specified constraints. 
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By conducting rigorous qualitative and quantitative analyses, we show the efficacy of our framework in generating 

architecturally correct and aesthetically appealing floorplans. We also carry out a user study to evaluate the usability and 

real-world implications of our tool, pointing out its applicability in real-world scenarios. We also carry out an ablation 

study and comparative analysis with state-of-the-art methods to confirm the efficiency and accuracy of our approach. By 

combining AI-powered automation with direct user control, our system closes the gap between computational design and 

real-world architectural workflows, providing a versatile tool for designers, architects, and urban planners. 

 

II.RELATED WORKS 

 

Our work is a part of the larger class of generative modeling for structured configurations. Computer graphics research 

has provided many techniques to generate structured layouts in recent years, such as document and clipart layouts, urban 

layouts like street networks, and procedurally generated game levels . Here we concentrate on organized arrangement 

techniques more immediately connected to our work, such as indoor scene synthesis, floorplan generation, and image 

composition. 

 

Indoor Scene Synthesis 

Indoor scene synthesis is the process of creating realistic furniture and object arrangements in a specified room. Initial 

approaches depended on pre-defined placement constraints and physics-based simulation. For example, Xu et al proposed 

an approach that employs pseudo-physics to place objects according to pre-defined constraints. More recently, Merrell 

et al proposed an interactive system that proposes furniture placements by integrating user constraints and interior design 

rules. 

As data-driven methods developed, more complex methods were implemented. Fisher et al used Bayesian networks to 

generate scenes from example setups, and Fisher et al. further improved this method with the prediction of action maps 

from input scans via learned models. Zhao et al.  presented a method which generates scenes according to object 

interaction in example settings. 

Although indoor scene synthesis is related to floorplan generation, the main difference occurs in the goals of design: 

scene synthesis seeks to place objects inside given room boundaries, whereas floorplan generation requires dividing a 

building layout into individual rooms under functional and architectural constraints. 

 

Floorplan Generation 

Floorplan generation seeks to generate functional building layouts from input constraints, including room adjacencies, 

sizes, and building boundaries in general. Early research in this area was largely based on optimization and procedure-

driven approaches. Arvin and House employed spring-system representations to produce layouts approximating pre-

specified design goals. Merrell et al utilized stochastic optimization combined with Bayesian networks to produce 

residential layouts from top-level constraints. Later research, e.g., by Rosser et al, further developed this idea by 

combining user-specified building profiles and room details. Furthermore, Rodrigues et al investigated evolutionary 

techniques for the optimization of building floor plans considering constraints. 

More recently, Wu et al proposed a mixed-integer quadratic programming (MIQP) method to produce optimized interior 

plans, further pushing the limit of constraint-based layout generation. Some approaches have ventured beyond typical 

residential floorplans; for instance, Bao et al gave an exterior building floorplan exploration approach, while Feng et al 

proposed a spatial layout optimization framework for large spaces, including shopping malls and transportation centers, 

from pedestrian simulation data. 

In contrast to such methods, based on strong priors or limited machine learning models (e.g., Bayesian networks), our 

method uses deep learning to learn implicit architectural constraints from training data and thus has a more flexible and 

efficient floorplan generation process. 
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Deep Learning for Layout Generation 

The use of deep learning in layout generation has made great strides. Wu et al presented a deep model that produces 

residential floorplans by predicting room positions and wall locations given an input building outline. The model, which 

was trained with a large dataset of labeled floorplans, effectively translates its predictions into vectorized representations 

of the floorplan. Its key limitation, though 

 

Graph-Based Generative Models 

New means of representing structured data in deep learning models have been offered through recent developments in 

graph generative models. GRAINS and PlanIT are some of the me, is that there is little user control over the output, other 

than defining the building boundary. 

Our approach varies from the above methods as it allows for fine-grained user control when generating floorplans. Rather 

than depending on solely implicit constraints acquired through data, we enable users to specify room adjacencies and 

important spatial properties through layout graphs. Such a hybrid method guarantees generated floorplans follow learned 

design rules as well as user-specified constraints. Further, our approach incorporates graph retrieval methods, drawing 

upon existing architectural work to influence the generation process, leading to more contextually consistent layouts. 

Methods that use graph-based representations to generate indoor scenes.  

While such approaches effectively produce structured layouts, they mainly project rectangular room boundaries and fixed 

wall locations. In contrast, our method accommodates arbitrary rectilinear building perimeters, enabling more varied and 

plausible architectural arrangements. To that end, we use graph neural networks (GNNs) to encode spatial relations and 

improve generated layouts using an alignment step to maintain architectural consistency. 

 

Image Composition from Scene Graphs 

Scene graph-based image synthesis has emerged in computer vision as a way of producing structured visual content. 

Graph convolutional networks (GCNs) with adversarial learning were proposed in influential works like Johnson et al. 

to produce images from scene graphs. Ashual and Wolf built upon this by decoupling object appearance modeling from 

layout generation to achieve better image synthesis quality. 

Our work draws inspiration from these approaches by utilizing graph-based representations to guide generative processes. 

However, unlike image synthesis, which focuses on blending objects within a scene, our problem involves spatial 

partitioning and floorplan layout optimization. The key challenge lies in ensuring that generated layouts adhere to both 

geometric constraints and functional requirements, necessitating a tailored approach that extends beyond standard scene 

graph models. 

 

III.OVERVIEW 

 

This paper introduces a new deep learning architecture for floorplan generation that supports user-in-the-loop design 

personalization. The system combines user constraints, layout retrieval, and neural network-based generation of 

floorplans to generate customized layouts with respect to architectural design principles. 

The system is composed of three major components: initial user input, layout graph retrieval, and floorplan generation. 

Users first provide a building boundary and constraints like room types, number, and adjacency preferences. The system 

then extracts suitable layout graphs from the RPLAN dataset in a retrieve-and-adjust paradigm such that the produced 

floorplans meet real-world design guidelines. Users can also edit these graphs to suit their own specifications. 

The network is the focal point of the floorplan generation process. The network learns to retarget the extracted layout 

graphs into the specified boundary, circumventing structural retargeting difficulties. The network predicts room bounding 

boxes and renders a raster floorplan image in order to merge overlaps and ensure spatial consistency. A final optimization 

phase aligns and vectorizes the layout in order to yield a valid and well-structured floorplan. 

Through the combination of user-guided customization and deep learning, this system makes it possible to generate 

various and well-designed floorplans. Future work may include adding other types of constraints, such as functional and 

accessibility aspects, and expanding the system to include furniture placement and more complex layout adjustments. 

 

IV.LAYOUT GRAPH RECOMMENDATION 

 

We derive layout graphs from the RPLAN dataset [Wu et al. 2019] and scale them to user-specified building boundaries. 

Users can then edit these graphs to suit constraints even better.Graph Extraction:Floorplans in RPLAN are annotated 

semantic raster images. Each room exists as a node in a graph, with rooms adjacent to one another connected with edges. 

Rooms contain information for room type, location (a 5×5 grid coordinate), and relative size (comparing to building 

area).  
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Adjoining pairs were identified by interior doors and the proximity threshold values, while relative spatial positions (left 

of, above) provide edge connections. More than 80K graphs were derived from 120K floorplans with varied templates 

provided for user drawings.Graph Retrieval:Constraints such as room types, locations, and adjacencies are specified by 

users. Graphs are screened according to constraint satisfaction and ordered according to the similarity of their source 

boundaries with the boundary supplied by the user. Matching involves front door position, employing a turning function 

[Arkin et al. 1991] to match boundary shapes.Graph Adjustment:Retrieved graphs are readjusted to the user's boundary 

by rotating them to correspond to front doors and readjusting node locations within a 5×5 grid. Nodes beyond the 

boundary are moved to the nearest vacant cell, maintaining layout validity. Users can interactively adjust the graph by 

modifying room nodes and adjacencies. The resulting adjusted graph is applied to produce a tailored floorplan. 

 

V.FLOORPLAN GENERATION 

 

A  graph network for floorplan generation. It also describes how the output is processed to generate the final vector-based 

floorplan. 

 

Network Input and Output 

Network takes as input:Building boundary (B): A 128 × 128 image with three binary channels for the inside, boundary, 

and entrance doors. 

Layout graph (G): A user-limited graph with nodes (N) and edges (E), denoting rooms and their connectivity. 

Every room (i) of the floorplan is a node (ni), having: Room category (ri): A learned 128-dimensional representation 

encoding 13 types of rooms. 

Location (li): A 25-dimensional vector representing the position of the room in a 5 × 5 grid. 

Size (si): A 10-dimensional feature vector for room size. 

Edges (eij): Represented relations between rooms, selected from 10 possible relations.The output is comprised of:A 128 

× 128 floorplan image (I).Two sets of room bounding boxes:Initial boxes (B0i). Advanced boxes (B1i), each of which 

specifies the position and extent of a room (xi, yi, wi, hi) 

 

Network Structure 

Graph Neural Network (GNN): Maps the layout graph (G) into features of the rooms.Boundary Encoder: Finds boundary 

features of (B), which are fed together with the room features. 

Box Network: Predits an early group of room bounding boxes. 

Cascaded Refinement Network (CRN): It exploits the predicted room boxes to predict the floorplan image (I). Rooms 

which are overlapping get merged through their features summed. 

BoxRefineNet: Each room's bounding box gets refined utilizing the floorplan image (I) as reference. It performs in the 

following way: 

The entire image is convolved with convolutional layers to produce a feature map. 

A Region of Interest (RoI) pooling layer extracts features for every room. 

The features are fed through fully connected layers to fine-tune the box's position and size. 

 

VI.ROOM ALIGNMENT 

 

 
 

produces a raster floorplan image and one bounding box per room. The misalignments and overlaps are possible though. 

To counteract them, we adjust room alignments and find the order of drawing via generated floorplan. 
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Initially, we align room boxes with the building boundary and align adjacent rooms. Every room edge is snapped to the 

closest boundary edge of the same direction if it's within a threshold ττ. Neighboring rooms are aligned according to their 

geometric relations in the layout graph—for example, room A's right boundary aligns with room B's left boundary if they 

are proximal, reducing corners. Updates are executed iteratively and keeping previously refined alignments. 

 

Finally, we find room labels and drawing order for overlapping areas. From the produced floorplan image, we count the 

pixels in the overlap labeled and give priority to the room with fewer pixels or, if there is a tie, the larger area. A directed 

graph is formed with nodes for rooms and edges representing precedence constraints. A topological sorting algorithm is 

used to decide the final drawing order, breaking cycles by eliminating the node of smallest outdegree. 

 

Lastly, windows and interior doors are positioned according to Wu et al. [2019] so that doors link adjacent rooms and 

windows line up with the exterior walls. 

 

VII.RESULT AND EVALUATION 

 

generates a raster floorplan image and room bounding boxes. Misalignments and overlaps can occur, though. For these 

to be resolved, we refine room alignments and establish the drawing order from the created floorplan. 

 

To start, we align room boxes with the building boundary and reposition neighboring rooms. Each edge of a room is 

snapped to the closest boundary edge of the same orientation if it is within a threshold ττ. Overlapping rooms are aligned 

according to their spatial position in the layout graph—i.e., A's right edge would align with B's left edge if they are close 

enough to reduce corners. Iteratively applied updates preserve previously improved alignments. 

 

Finally, we establish room labels and the drawing order of overlapping parts. Based on the resulting floorplan image, we 

number the pixels of labeled pixels in the overlap and give priority to the room having fewer pixels or, if they are equal, 

the greater area. A directed graph is built in which vertices correspond to rooms, and arcs signify precedence relationships. 

We apply a topological sort algorithm to establish the ultimate drawing order, breaking cycles by eliminating the vertex 

of minimum outdegree. 

 

Lastly, windows and internal doors are positioned according to Wu et al. [2019] so that doors link adjacent rooms and 

windows face exterior walls. 

 

VIII.CONCLUSION AND FUTURE WORKS 

 

In summary, we have described the first user-guided deep learning framework to generate floorplans with interactive and 

flexible design tuning. Through utilizing layout graphs, users can state their design purposes, fetch floorplan structures 

relative to their intents, and loop refine these structures to achieve desired outcomes. Our method provides a way of 

generating varied floorplans from identical input boundaries along with maintaining architecturally learned rules from a 

wide set of historical layouts. 

 

Although it has its benefits, the model has some limitations. The existing model does not include accessibility 

requirements, functional aspects, or adjacency constraints such as ensuring that certain rooms are not placed next to each 

other or certain boundary features. Also, interior features such as doors and windows are not modeled explicitly, and the 

alignment of predicted rooms is based on post-processing and not part of the learning process. In addition, if the extracted 

layout graph is substantially different from the input boundary, the resulting floorplan might not satisfy all constraints, 

resulting in overlaps or misplaced rooms. 

 

Future research will address these limitations by increasing the variety of user constraints and improving the structural 

modeling of synthesized floorplans. These can include support for more user-specified parameters, like support walls, 

optimizing room alignment in the learning setup, and supporting more sophisticated layout graph manipulations. 

Additionally, expanding the framework to accommodate user preference-based furniture arrangement and investigating 

structural learning for optimizing room arrangements will enhance the usability and correctness of our system further. 

These developments will help in developing a more feature-rich and versatile floorplan generator with more control and 

accuracy to designers and architects. 
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