
IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 6, June 2025 

DOI:  10.17148/IARJSET.2025.12625 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  206 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

Code Genie: AI- Driven Code Generation with 

Optimization and Commenting 
 

Harshita Deogade1, Dhanraj Jadhav2, Prajakta Ugale3, Anuj Vibhute3 

Prof. N. G. Bhojne4 

Student, Department Of Computer Engineering, Sinhgad College Of Engineering, Pune, India1-3 

Professor, Department Of Computer Engineering, Sinhgad College Of Engineering, Pune, India4 

 

Abstract: This paper introduces a cutting-edge AI-powered web application designed to revolutionize interview 

preparation. Built using Next.js, integrated with large language model (LLM) APIs, and enhanced by modern UI 

frameworks, the platform delivers an interactive and personalized experience. Key features include AI-generated mock 

interviews, structured roadmaps for technical learning, book-based study content, and dynamic performance feedback. 

Unlike traditional LLM interactions such as ChatGPT, this application provides goal-oriented, context-aware guidance 

with an intuitive UI/UX. It bridges learning gaps through structured approach and leverages analytics to offer actionable 

insights, enabling users to track progress and improve systematically throughout their preparation journey. 

Keywords: AI Interview Preparation, Next.js, Full-stack Development, Gemini API, LLM, TailwindCSS, Roadmaps, 

Automated Feedback, EdTech, React.js. 

 

I. INTRODUCTION 

 

In recent years, the rapid development of large language models (LLMs) such as OpenAI's ChatGPT, Google Gemini, 

and Anthropic’s Claude has revolutionized how users interact with artificial intelligence. These models can generate 

human-like responses to a wide variety of queries, making them highly effective for tasks such as coding assistance, 

language translation, ideation, and most notably, educational support. 

Among the key areas where LLMs have shown promise is in interview preparation, where users can simulate question-

answer interactions, get explanations on concepts, and practice communication skills. However, while LLMs like 

ChatGPT offer substantial capabilities, their application in isolation comes with limitations. 

To address these limitations, this paper presents an end-to-end AI-powered interview preparation platform that builds on 

the strengths of LLMs while resolving their shortcomings. The platform is designed as a full-stack web application 

integrating: 

Real-time LLM interactions via Gemini API, domain-specific roadmaps (e.g., Frontend, Backend, Java, DevOps), AI-

powered interview modules with audio recording and feedback, interactive book-based learning, and a comprehensive 

dashboard for monitoring performance and progress. 

By providing a modular, interactive, and multimedia-rich environment, the platform transforms the traditionally passive 

LLM experience into an active, user-centric learning ecosystem. It is specifically tailored for technical learners aiming 

to improve not only their theoretical knowledge but also their communication, self-assessment, and practical interview 

readiness. The result is a more holistic and scalable solution for technical interview preparation that goes far beyond the 

capabilities of standalone chat-based models. 

II. METHODOLOGY 

This application uses a modular approach:  

1.Frontend: The frontend is developed using React.js and Next.js. React handles dynamic UI components, while Next.js 

supports server-side rendering (SSR) and optimized routing. This enhances performance, SEO, and overall user 

experience by enabling fast page loads, component reuse, and seamless navigation between interview, roadmap, and 

dashboard modules. 

 

2.Backend: The backend utilizes the Gemini API to generate AI responses for interview questions and feedback. Data 

persistence and queries are handled using Drizzle ORM, which provides a type-safe and migration-friendly interface to 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 6, June 2025 

DOI:  10.17148/IARJSET.2025.12625 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  207 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

interact with a SQL database. This combination ensures modular, scalable, and real-time communication between the 

client and AI components. 

 

3.Styling: Styling is implemented using TailwindCSS, a utility-first CSS framework that promotes clean, responsive, 

and maintainable designs. Additionally, Framer Motion adds animation support, allowing UI elements like dashboards 

and interview interfaces to appear smoothly and interactively. This enhances the overall user experience and maintains 

visual consistency throughout the platform. 

 

4.Authentication: Firebase is used for secure user authentication, offering email/password-based sign-in and identity 

management. It supports authentication persistence, session tracking, and user state updates across the platform. This 

ensures that user data like past interviews and progress are accessible only to the logged-in user, enhancing both usability 

and security. 

 

5.Speech & Audio: The system uses Web Audio APIs to enable real-time audio recording for interviews. Additionally, 

a Teachable Machine model classifies voice inputs and contributes to feedback generation. This allows users to simulate 

real interviews, record their responses, and receive audio-based insights—adding a practical, multimodal learning 

dimension beyond simple text. 

 

6.Storage: Drizzle ORM is used with SQL for structured, version-controlled database operations and schema migrations. 

It simplifies managing interview logs, user progress, and AI feedback. The project is hosted on Vercel, enabling fast, 

globally distributed deployment with automatic integration for serverless functions, environment variables, and 

continuous deployment from Git. 

 

III. FEATURES 

 

1.AI Interview Simulation: This feature simulates real-time technical interviews by generating dynamic, domain-specific 

questions using the Gemini API. Users respond via voice, which is recorded, transcribed, and visualized through 

waveform animations. This immersive approach mimics actual interview settings and helps users develop verbal 

articulation, confidence, and spontaneous thinking skills in a controlled environment. 

 

2.Dashboard: The dashboard provides users with a centralized interface to monitor their performance. It stores all past 

interviews, generated feedback, AI summaries, and user progress. This historical tracking allows learners to evaluate 

improvements over time and revisit feedback, encouraging consistent practice and data-driven learning habits. 

 

3.Technical Roadmaps: The platform includes detailed, curated learning roadmaps for Frontend, Backend, Java, 

MongoDB, Kubernetes, and DevOps. Each roadmap breaks down complex topics into manageable steps with linked 

resources. This structured content helps users plan their learning path, stay focused, and gain subject mastery aligned 

with industry expectations. 

 

4.E-book/Book Section: The book module allows users to access embedded PDFs categorized by subject. It complements 

other learning modules by offering theory-based reference material. The intuitive reader interface enhances accessibility, 

allowing learners to review core concepts alongside practical interview preparation for a more balanced and 

comprehensive understanding. 

 

5.Authentication: User authentication is implemented via Firebase, ensuring secure and seamless login and registration 

workflows. It supports email/password methods and session management, protecting sensitive user data and interview 

records. Persistent authentication enhances the user experience by enabling personalization and uninterrupted access to 

stored learning data across sessions. 

 

6.AI Text Generator Module (codegenai): This module leverages AI to generate coherent, context-aware textual content, 

useful for mock responses, explanations, or practice materials. It enhances user learning by simulating model answers 

and allowing comparisons with user-generated responses. Located in the codegenai directory, it represents the core AI-

driven content generation engine of the platform. 

 

7.Feedback & Summary: After each interview, the system uses AI models to generate concise summaries and evaluate 

user responses based on relevance, coherence, and confidence. The ModelPrediction logic provides personalized 

feedback, highlighting strengths and improvement areas. This automated feedback loop helps users self-correct and build 

competence over time. 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 6, June 2025 

DOI:  10.17148/IARJSET.2025.12625 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  208 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

IV. SYSTEM ARCHITECTURE 

 

 
 

V.  ALGORITHMS USED 

 

1.Question Generation (Prompt Chaining using Gemini): Dynamically generates context-aware interview questions using 

prompt chaining with Gemini API, adapting based on user responses for a realistic, conversational interview simulation. 

 

2.Model Prediction & Feedback (Weighted NLP Scoring):Applies weighted NLP techniques to score user responses by 

analyzing grammar, coherence, keyword match, and semantic relevance against ideal AI-generated answers. 

 

3.Audio Waveform Processing (Web Audio + Teachable Machine): Captures audio using Web Audio APIs and analyzes 

voice patterns with a Teachable Machine model to visualize and validate spoken input quality. 

 

4.Recommendation Engine (Roadmap-Based Suggestions): Analyzes past interview performance to recommend targeted 

roadmap sections, promoting personalized, goal-oriented learning and continuous skill improvement. 

 

5.Transcription & Text Normalization:Converts speech to text via Web APIs, then cleanses the transcript using stop-

word removal, lemmatization, and punctuation correction for accurate NLP processing. 

 

6.Semantic Similarity Matching (Embedding Comparison): Calculates cosine similarity between sentence embeddings 

of user and model responses to assess conceptual overlap and answer relevance. 

 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 6, June 2025 

DOI:  10.17148/IARJSET.2025.12625 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  209 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

7.Prompt Ranking & Refinement: Implements few-shot prompt variations and ranks them to ensure high-quality, domain-

aligned question generation across interview sessions. 

 

8.Session Scoring & Progress Analytics: Aggregates scores from multiple criteria like accuracy, fluency, and relevance 

to provide session-wise performance insights via the dashboard. 

VI.   TESTING 

 

Robust testing was carried out to ensure functional accuracy, performance consistency, and AI reliability across all 

modules. The following testing approaches were employed: 

 

1.Unit Testing on Components: Unit testing was performed on individual frontend and backend components to verify 

their isolated functionalities. React components (like interview UI, dashboard cards, and roadmap modules) were tested 

using tools like Jest and React Testing Library to ensure they render correctly, handle state, and trigger expected events 

without error. 

 

2.Manual Functional Testing Across Browsers: Cross-browser manual testing was conducted on Chrome, Firefox, and 

Edge to validate UI consistency, responsiveness, and core functionality. This included navigating through interviews, 

viewing dashboards, and accessing the roadmap. Particular focus was placed on audio input reliability, UI transitions, 

and seamless routing via Next.js. 

 

3.Validation of AI Outputs (Response Relevance):To ensure AI reliability, a sample of generated interview questions, 

feedback, and summaries were manually reviewed. Responses were evaluated for domain relevance, coherence, and 

quality. Iterative prompt tuning and model behavior tracking were conducted to improve output accuracy and reduce 

hallucination or redundancy. 

 

4.Audio Model Testing for Accurate Speech Detection: The speech recognition pipeline, built using Web Audio APIs 

and Teachable Machine, was tested with diverse voice samples. Factors such as accent, pitch, background noise, and 

pacing were varied to test robustness. Waveform rendering, speech segmentation, and transcription quality were validated 

to ensure consistent audio-to-text performance. 

 

5.Performance Testing: Load and stress tests were conducted to evaluate system responsiveness under multiple 

simultaneous users. Key metrics such as API response times for Gemini-based question generation and transcription 

latency were measured. Optimization efforts ensured smooth user experience with minimal lag during interviews and 

dashboard updates. 

 

 
 

6.Usability Testing: The platform underwent usability testing with target users to assess ease of navigation, clarity of 

instructions, and overall user experience. Feedback sessions guided improvements in interface layout, accessibility 

features (e.g., color contrast, keyboard navigation), and mobile responsiveness, ensuring broad usability. 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 6, June 2025 

DOI:  10.17148/IARJSET.2025.12625 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  210 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

7.Security Testing: Security evaluations focused on the Firebase authentication system, ensuring protection against 

unauthorized access, session hijacking, and data leakage. User data privacy was rigorously tested with secure storage of 

sensitive information like interview recordings and transcripts. OWASP security best practices were followed to mitigate 

common vulnerabilities. 

 

8.Compatibility Testing: Compatibility tests verified consistent behavior across major browsers (Chrome, Firefox, Safari, 

Edge) and device types (desktop, tablet, mobile). Particular attention was given to audio recording/playback features, 

ensuring support for different hardware and operating system configurations. 

 

9.User Acceptance Testing (UAT):Beta testing involved real users from the target audience performing interview 

simulations and exploring learning roadmaps. Their feedback on functionality, performance, and ease of use was 

collected and incorporated, ensuring the platform meets practical user needs before launch. 

VII. RESULTS AND DISCUSSIONS 

 

The below chart shows module-wise performance metrics for CodeGenie. The codegenai module is the most complex 

but maintains high accuracy of (92%) and modularity. Dashboard and Book offer balanced performance. Auth and 

Contactus modules are highly maintainable and readable, making the platform efficient, structured, and user- friendly 

across all components. 

 

 

VIII. CONCLUSION 

 

The developed AI interview preparation platform successfully integrates LLM capabilities with structured learning, real-

time feedback, and multimedia interactivity. It enhances user experience through personalized interviews, performance 

tracking, and organized roadmaps, addressing the shortcomings of standalone AI tools. With improved accuracy, 

usability, and user satisfaction, the system transforms traditional preparation into an engaging, goal-oriented journey. Its 

modular architecture also ensures scalability, adaptability, and potential for future EdTech innovations. 

IX.     FUTURE SCOPE 

 

The implementation of CodeGenie as an AI-powered educational code generation platform lays a strong foundation for 

future enhancements. While the current system successfully integrates natural language input, AI-assisted code 

generation, and educational roadmaps, several opportunities exist to further improve its utility, accuracy, and scalability: 

 

1.Video Interviews with Facial Expression Analysis: Incorporating webcam-based video interviews will            simulate 

real-life scenarios and allow the system to capture facial expressions, eye contact, and body language. Using facial 

emotion recognition libraries (e.g., MediaPipe, OpenCV with deep learning), the platform can analyze non-verbal cues 

to assess user confidence, stress levels, and engagement, enhancing the depth of AI feedback and making the platform 

suitable for soft skills training. 

 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 6, June 2025 

DOI:  10.17148/IARJSET.2025.12625 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  211 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

2.Mock Coding Rounds using In-Browser IDEs:  Integrating an in-browser coding environment   (using tools like Monaco 

Editor or CodeMirror) will    allow users to practice real-time coding questions during mock technical rounds. The system 

can auto-evaluate code quality, time complexity, and correctness using static code analysis and test cases. Additionally, 

integrating code pair programming simulations and compiling code in languages like Python, Java, or JavaScript via 

online sandboxes (e.g., Judge0 API) can make the experience highly realistic. 

 

3.Advanced AI Feedback through Emotion    Detection and Semantic Scoring: Beyond keyword matching or template-

based evaluation, AI feedback mechanisms can be enhanced using sentiment analysis and NLP-based semantic similarity 

scoring (using models like BERT, RoBERTa). Emotion detection in voice (prosody, tone) or text answers will help 

provide more empathetic and personalized feedback. For instance, if a candidate sounds nervous or unsure, the system 

can recommend practice sessions or confidence-building tips. 

 

4.Adaptive Learning Paths Based on User History and Performance: Using machine learning algorithms (e.g., clustering, 

recommendation systems), the platform can analyze user behavior, quiz/interview outcomes, and topic preferences to 

generate dynamic, personalized learning paths. This allows the platform to recommend content (like specific roadmap 

sections or books) tailored to the user’s weak areas and progress rate. Over time, the system evolves with the learner, 

creating a customized curriculum that grows with their skills and confidence. 

X. APPENDIX 

 

A. Project Modules Overview 

The CodeGenie system is composed of several core modules developed to facilitate intelligent code generation,    

educational support, and user experience: 

1. codegenai: Integrates OpenAI's API to generate code from user-defined problems in multiple languages. It 

provides both brute-force and optimized solutions with complexity annotations and inline commenting. 

2. dashboard: Offers a central view for users to track progress, view saved problems, and manage generated code 

history. 

3. book: Contains a curated list of real-world and interview-style programming problems. It allows users to test 

their understanding across varied topics. 

4. roadmaps: Presents topic-based learning roadmaps in software development, structured as guided paths for 

beginners to intermediate learners. 

5. auth: Handles user authentication via Clerk, providing secure login, registration, and session tracking. 

6. contactus & aboutus: Informational modules that offer transparency, support, and a way to gather user feedback. 

B. Implementation Stack 

• Frontend: Next.js (React), Tailwind CSS 

• Backend: Node.js (Serverless) 

• AI: OpenAI GPT API 

• Database: NeonDB (PostgreSQL) 

• Authentication: Clerk 

• Deployment: Vercel (Frontend), AWS Lambda (API functions) 

C. Code Metrics Summary 

Module LOC Accuracy Readability Maintainability 

codegenai 707 92% 75% 78% 

dashboard 1477 90% 80% 82% 

book 1316 88% 77% 80% 

roadmaps 671 85% 70% 78% 

auth 150 90% 85% 90% 

contactus 117 95% 90% 95% 

D. Testing & Evaluation 

• Manual QA: Each module was manually tested using functional test cases covering core flows. 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 6, June 2025 

DOI:  10.17148/IARJSET.2025.12625 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  212 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

• AI Agreement Testing: Output was compared against best practices from recent studies on ChatGPT-assisted 

development. 

• User Feedback: Collected via embedded forms and observed through usage analytics. 

E. Tools & Dependencies 

• Libraries: ShadCN UI, Lucide React Icons, Framer Motion, Axios 

• Hosting: Vercel, AWS Lambda 

• Monitoring: Session logging via browser events. 

F. Future Scope 

• Integration of voice-to-code 

• In-app terminal for code testing 

• GPT-based feedback loop for quality analysis 

 

REFERENCES 

 

[1]. Assessing AI Detectors in Identifying AI-    Generated Code: Implications for Education by Wei Hung Pan 

wpan0017@student.monash.edu School of Information Technology, Monash University Malaysia Subang Jaya, 

Malaysia Ming Jie Chok mcho0068 student@monash.edu . 

 

[2]. Improving Source Code with Assistance from AI — A Pilot Case Study with ChatGPT by Steven McDaniel, 

Department of Computer Science Idaho State University Pocatello, ID, USA mcdastev@isu.edu Minhaz F. Zibran 

Department of Computer Science Idaho State University Pocatello, ID, USA minhazzibran@isu.edu . 

 

[3]. Assessing AI-Based Code Assistants in Method Generation Tasks Vincenzo Corso, Leonardo Mariani, Daniela 

Micucci and Oliviero Riganelli University of Milano-Bicocca Milan, Italy. 

 

[4]. Cross-Language Code Development with Generative AI: A Source-to- Source Translation Perspective by D. 

Spinellis, “Pair Programming With Generative AI,” IEEE Software, vol. 41, no. 3, pp. 16-18, May-June 2024. 

 

 

 

 

 

 

 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/

