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Abstract: Heart Cardiovascular disease continues to be one of the leading causes of death globally, especially in under-

served and rural communities where access to sophisticated diagnostic tools is limited. This study explores the use of 

machine learning (ML) and explainable artificial intelligence (XAI) to provide accessible, reliable, and interpretable early 

detection of heart disease. Leveraging a synthetically generated dataset modelled on common patient profiles based on 

features like age, cholesterol, chest pain type, ECG readings, and maximum heart rate we developed and evaluated four 

ML models: Logistic Regression, Random Forest, Gradient Boosting, and XG Boost. 

 

Our work proposes a two-tier diagnostic framework: a lightweight, mobile-friendly model for community-level 

screening, and a more advanced model for clinical environments. We employed SHAP (SHapley Additive exPlanations) 

to ensure model interpretability and transparency, critical for clinical adoption. The results are promising, with the mobile-

tier model achieving 81% accuracy and the clinical-tier model reaching 89%. These findings underscore the potential of 

interpretable AI to democratize cardiac care, particularly in areas lacking medical infrastructure. Future directions include 

integrating wearable devices and telemedicine to support real-time monitoring and broader health equity. 

 

I.       INTRODUCTION 

 

Cardiovascular disease (CVD) remains the leading cause of death worldwide, causing an estimated 17.9 million deaths 

annually, or about 32% of global mortality (Tsao et al., 2023). Although diagnostic techniques (i.e., echocardiography, 

coronary angiography, biomarker testing) have seen major developments, these resources are largely not accessible to 

those populations residing in rural areas and/or underserved institutions due to a widespread lack of funding. In rural, 

under-resourced healthcare environments, misdiagnosis and delays in trigging medical intervention for CVD patients are 

particularly plagued by long, protracted time to diagnose, and treat instances of CVD, adding to CVD burden and risk of 

dying from CVD (Emmons-Bell, Johnson, & Roth 2022). 

 

There has never been a time when the necessity of early diagnosis and cost-effective diagnostic alternatives was more 

important. Machine Learning (ML) has emerged as a novel and robust method for discerning subtle non-linear patterns 

in clinical and physiological data towards heart disease prediction with high accuracy (Tiwari, Chugh, & Sharma, 2022; 

Bora, Gutta, & Hadaegh, 2022). Supervised learning algorithms like Decision Trees (DT), Random Forest (RF), Support 

Vector Machine (SVM), and ensemble classifiers have been widely employed to predict the cardiac disease conditions 

from the crucial attributes, such as age, blood pressure, cholesterol, resting ECG result, and other risk factors 

(Kommineni, Patel, & Kumar, 2024; Kumar et al., 2023). These models obtain more than 85% predictive rates in 

benchmark studies with benchmarks using datasets and others such as the Cleveland Heart Disease Dataset (Siddhartha, 

2020; Janosi et al.,n.d.). 

 

However, a major issue in ML application in healthcare is interpretability. State-of-the-art models, and in particular the 

ensemble methods and the neural networks, are the so-called "black boxes": they offer good prediction, but they do not 

reveal, which features are important for such decision (Zafar & Khan, 2021). Such opacity makes clinical acceptance 

difficult, as the physician will want a clear, interpretable rationale for guiding his diagnosis or prescriptions. 

In response, the Explainable AI (XAI) approaches, e.g., SHAP (SHapley Additive exPlanations) [11] and LIME (Local 

Interpretable Model-agnostic Explanations) [31], have been developed to improve model interpretability. SHAP in 

specific is based on cooperative game theory and offers both global and local interpretability by computing importance 

scores for input features, indicating where it is of high relevance, thus it is well-suited for clinical scenarios where 

accountability is crucial (Vijayvargiya et al., 2023; Chandrasekhar & Peddakrishna, 2023). 

 

In this paper, we introduce a two level ML based approach for heart disease classification which is reliable, interpretable 

and scalable for low resource setting. To make up for the lack of data, a synthetic dataset was introduced that attempts 

to model a range of real-life cardiac profiles, so as to make the approach more general. 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 6, June 2025 

DOI:  10.17148/IARJSET.2025.12627 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  219 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 

 

Several machine learning models were trained, optimized, tested and compared, with performance measured using 

accuracy, sensitivity, and specificity. SHAP explainability has been incorporated in the system so that the predictions are 

not only accurate but also transparent and clinically actionabl. 

 

In this way, this study aims to contribute to democratization of AI-based diagnostics by focusing on usability and in 

under-served populations and yet maintaining clinical reliability. Because it unites predictive precision with 

interpretability, this solution comports with its own global health priorities of minimizing delays in treatment for 

mortality-reducing and equity-advancing early interventions (Mulwani, Lee, & Gonzalez, 2024; Rajjliwal & Chetty, 

2022). 

 

II.        LITERATURE REVIEW 

 

Cardiovascular diseases (CVDs) constitute the leading cause of death worldwide with millions affected each year (Tsao 

et al., 2023). Timely and accurate prediction is crucial for the control of CVD outcomes. In the past few years, the 

combination of ML and XAI has held a promise of a paradigmatic shift towards increased diagnostic accuracy and 

transparency in clinical decision-making (Sethi et al., 2024). 

 

ML models work with large, complicated data sets, such as patient history and clinical biomarker data and 

electrocardiogram (ECG) data, at a rapid pace and with impressive accuracy. However, for practical use in medicine, 

especially in life-threatening fields such as cardiology, these models need to be explainable, reliable and transparent. 

XAI fills the gap by generating interpretable results, which promotes trust between clinicians and patients (Vijayvargiya 

et al., 2023). 

 

A wide variety of ML algorithms have been already applied to predict heart disease such as Logistic Regression (LR), 

Decision Trees (DT), Random Forest (RF), k-Nearest Neighbors (KNN), Naive Bayes (NB), AdaBoost, and Neural 

Networks (NN) (Kommineni et al., 2024; Kumar et al., 2023). Due to DTs’ simplicity and transparency, they are often 

preferred in health, especially in cases demanding clinical guidance (Kommineni et al., 2024). 

 

Ensemble techniques, including Gradient Boosting, XGBoost, and stacked ensembles, have also been found to be 

superior in prediction. For example, Tiwari, Chugh, and Sharma (2022) trained a stacked ensemble model (ExtraTrees+ 

RF+ XGBoost) with IEEE DataPort data to the 92.34% accuracy. Equally researchers which used the Cleveland Heart 

Disease dataset have achieved accuracies higher than 85% (Siddhartha, 2020; Gabor, n.d.). 

 

However these approaches often do so while sacrificing explainability. While complex models, such as semantic 

networks, are powerful, they are often thought of as “black box” models, which reduces their acceptance in clinical 

settings (Moreno-Sanchez, 2020; Al-Ssulami et al., 2023). 

 

To deal with the opaqueness of complex ML models, which the advanced ML models are all but, XAI techniques 

including SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) have 

become popular. These serve to extract which individual features are driving certain predictions, to improve 

interpretability (Zafar & Khan, 2021). 

 

For instance, LIME was adopted in Vijayvargiya et al. (2023) to explain RF-derived predictions in chronic disease risk 

and how these tools can help to demystify ML predictions. In heart disease, SHAP and LIME are both used for interpreting 

model prediction in real time, so that clinicians can benefit from actionable insights (Chandrasekhar & Peddakrishna, 

2023). 
 

The use of ML and XAI in cardiology has several useful applications. The AI systems can process huge data, including 

ECGs, blood reports and patient history, and detect intricate patterns, which human experts can overlook (Mulwani et 

al., 2024; Hossain et al., 2021). 
 

These tools allow for early diagnosis, risk stratification and individualized treatment strategies. Predictive analysis by 

ML, increases the efficiency in emergency and elective screening for cancer, which considerably reduces the patient 

outcome and health care system effectiveness (Bora et al., 2022; Biswas et al., 2021). 
 

Although great strides have been achieved, there are challenges for the adoption of ML and XAI within healthcare. A 

significant challenge is that these techniques rely on big, high-quality, labeled datasets that are scarcely available in-

resource or rural settings (Rajjliwal & Chetty, 2022). However, interpretable and computationally inexpensive traditional 

shallow models including LR and DT may still be the model of choice in such environments (Siddhartha, 2020). 
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Furthermore, most of the advanced ML models require rich clinical data, which is not feasible in the resource-constrained 

remote environment. Consequently, future research could focus on deploying lightweight interpretable models that 

generalise across varying healthcare settings (Emmons-Bell et al., 2022). 

 

The fusion of ML and XAI for detection of heart disease forms the development of an application, which, through an 

accurate, interpretable diagnosis, can potentially transform the present healthcare ethos. George Church recently said that 

they will enable earlier intervention, improved disease control, and greater clinical confidence. But issues such as data 

availability, computational capacity and blood flow interpretation must be addressed in order to fully utilize these 

methods. Now future work should be concentrating on tuning models to real-life use in different healthcare 

environments. 

 

III.      METHODOLOGY 

 

3.1 Dataset and Preprocessing 

In order to mimic the cardiological setting of real patients and achieve reproducibility, a synthetic data was generated 

for this study. The features in the dataset included clinical characteristics that are generally observable during routine 

physical examinations. They were age, sex, type of chest pain, resting blood pressure, cholesterol, fasting blood sugar, 

resting ECG results, and maximum heart rate (MaxHR). These characteristics are compliant with common markers 

employed in cardiology diagnostics and are reinforced by cardiology literature. 

 

Data pre-processing consisted in standard partition of the dataset into training and testing sets (using 80%-20% split of 

training and testing data for assessing model generalization). Moreover, due to the potential for imbalances between the 

negative and positive cases in a medical dataset, we used the Synthetic Minority Over-sampling Technique (also known 

as SMOTE). This technique synthesized new samples of the minority class, resulting in a balanced class distribution and 

thus fair model training. 

 

3.2 Feature Selection 

Feature selection is another important aspect to enhance model accuracy and interpretability by focusing on more 

informative input variables. In-Out Recursive Feature Elimination (RFE),a wrapper approach, has been used to select 

informative features to classify the heart disease. It stripped away features from the model that contributed the least in 

terms of model performance until the best subset was identified. Cholesterol, age, chest pain type, resting blood 

pressure, and maximum heart rate were the top 1 to 5 features selected by this method. These factors are also statistically 

significant in the study population and have been well reported in the clinical literature as major determinants of CVD. 

The latter increases the predictivity and the clinical relevance of the machine learning models used. 

 

3.3 Model Training and Evaluation 

3.3.1 Overview and Methodology 

In this paper, we develop a machine learning-based diagnosis system for precision cardiac risk assessment with 

interpretability. The models have been trained in the synthetic data set described and they have been trained with a range 

of cardiac profiles so they can be applied to different patient populations. We selected four well-known classification 

algorithms: Logistic Regression (LR), Random Forest (RF), Gradient Boosting (GB), and Extreme Gradi- ent Boosting 

(XGBoost). We chose these models due to their strong capability to classify (including in medical, health domains). The 

models were trained and evaluated as follows: comparison of their performance in terms of sensitivity, specificity, 

accuracy, and AUC. 

 

3.3.2 Data Preparation and Splitting 

Data pre-processed prior to training the model. Model performance was validated with 20% of the data to test, 

previously reserved (80%) for training. To address the asymmetry in the number of positive (patients with heart disease) 

and negative (patients without heart disease) cases, SMOTE was applied. This method increased the model's sensitivity 

to those samples of the minority class and has been effective in mitigating potential biases arising from an unbalanced 

dataset. The pre-processed data allowed each model to benefit from balanced and clinically diverse training examples. 

 

3.3.3 Feature Selection 

Feature selection was conducted by Recursive Feature Elimination, which calculated the importance of features step by 

step. The most 5 predictive variables were cholesterol, age, chest pain type, resting blood pressure, and maximum heart 

rate for the four models with which they were trained. These characteristics have long been linked to heart conditions 

and form part of risk stratification models in clinical practice. The consistent clinical implications indicate the 

generalizability and reliability of the proposed predictive model. 
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3.4 Hyperparameter Optimization 

To improve the predictive power of the classification models, hyperparameter tuning was performed with the help of 

Optuna, a modern hyperparameter optimization framework. Thanks to the adaptive sampling feature of Optuna, it was  

able to quickly navigate the parameter space to obtain the best model configurations, at lower computational cost. 

Moreover, metaheuristic optimization algorithms like the Cuckoo Search and Firefly Algorithm were also tested for 

tuning model parameters. These bio-inspired algorithms provided alternative mechanisms to avoid getting trapped in 

local minima and sampling a broader spectrum of parameter settings. These optimization strategies combined, aid to 

improve the model performance and resilience. 

 

3.5 Performance Evaluation 

Models were assessed using five key metrics: 

 

• Accuracy, Precision, Recall, F1-Score, and AUC-ROC 

Model Accuracy Precision Recall 
F1-

Score 

AUC-

ROC 

Logistic 

Reg. 
0.81 0.80 0.76 0.78 0.86 

Random 

Forest 
0.87 0.85 0.88 0.86 0.91 

Gradient 

Boosting 
0.88 0.86 0.89 0.87 0.92 

XG Boost 0.89 0.87 0.90 0.88 0.93 

 

IV.       EXPLAINABILITY ANALYSIS 

 

4.1 SHAP-Based Feature Importance 

In clinical settings interpretability is equally as important as accuracy. For this purpose, we analysed the importance of 

each feature using SHAP (SHapley Additive exPlanations) values in making model’s predictions. The feature-wise 

attribution with SHAP can be evaluated both globally and locally, so that it can interpret complicated ensemble models 

such as XG Boost. 

 

Among all models, the most relevant predictors for prediction results of all models were cholesterol values, chest pain 

type, and maximum heart rate (MaxHR) in line with the highest SHAP values. These factors were more again risk 

categories, emphasizing their value in computer-aided diagnostic systems. 

 

4.2 Clinical Interpretation 

The SHAP-based insights aligned closely with established cardiological knowledge. For example, elevated cholesterol 

levels and the presence of typical angina (ChestPainType = 0) were strongly associated with higher cardiac risk. 

Conversely, a normal resting ECG and higher maximum heart rate were correlated with a lower likelihood of 

cardiovascular disease. This alignment with known clinical risk indicators enhances the validity and acceptance of the 

model within healthcare environments, where explainable reasoning is essential for clinical decisions. 

 

4.3 Visualization and Impact 

To facilitate clinical use, SHAP summary plots were employed to visually communicate how each input feature 

influenced individual predictions. These intuitive graphics allow healthcare providers to interpret the rationale behind 

each prediction without needing deep technical expertise. The visual representation of feature impact supports informed 

clinical decision-making, enabling tailored treatment strategies and improving trust in AI-powered diagnostic tools. 

 

V.        RESULTS AND DISCUSSION 

 

5.1 Two-Tiered Diagnostic System 

To maximize both scalability and clinical precision, a two-tiered diagnostic architecture was developed. This approach 

balances accessibility for general populations with the precision required in clinical settings. 
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Tier 1 functions as a community-level screening tool, employing Logistic Regression based on a simplified set of features: 

age, sex, blood pressure, and chest pain type. This tier achieved an accuracy of 81% and is optimized for deployment in 

mobile applications. Its lightweight design makes it ideal for remote or resource-constrained areas where early screening 

is vital but advanced diagnostics are not readily available. 

 

Tier 2 serves as a clinical-grade diagnostic system, utilizing the XGBoost model and the full set of selected clinical 

features. Achieving an accuracy of 89%, this model is integrated into hospital systems and electronic health record (EHR) 

platforms. Its higher performance and greater complexity make it suitable for high-stakes diagnostic decisions within 

healthcare institutions. 

 

5.2 Deployment and Applications 

The system's architecture supports diverse deployment channels. A mobile application facilitates preliminary risk 

assessment and alerts users who may require further medical evaluation. In parallel, a digital health platform consolidates 

patient history, diagnostic outputs, and risk scores, allowing for longitudinal tracking and more holistic care. 

Additionally, the use of SHAP-based visualizations transforms the diagnostic process into a transparent, clinician-friendly 

tool. These visual explanations help doctors understand individual patient profiles and guide treatment planning, thus 

bridging the gap between data science and medical practice. 

 

5.3 Impact and Future Directions 

The proposed diagnostic framework significantly enhances triage efficiency and accuracy by providing decision support 

tailored to various clinical contexts. Its modular and scalable design enables easy adaptation to different healthcare 

environments, from under-resourced clinics to high-tech hospitals. 

Looking forward, future work will focus on integrating real-time data streams from wearable devices and IoT-enabled 

health monitors to improve dynamic risk modeling. Additionally, expanding the dataset to include genomic, lifestyle, and 

environmental data could further refine predictive accuracy and personalize treatment strategies. This ongoing evolution 

positions the system as a powerful tool in the movement toward precision medicine and equitable healthcare access. 

 

VI.       ANALYTICAL VISUAL SUMMARIES 

 

6.1 Comparative Model Performance 

To provide a clear visual understanding of model efficacy, a bar chart was constructed comparing the performance of 

Logistic Regression and XGBoost across five key metrics: accuracy, precision, recall, F1-score, and AUC-ROC. The 

chart illustrates the consistent superiority of XGBoost over Logistic Regression, particularly in recall (0.90 vs. 0.76) and 

AUC-ROC (0.93 vs. 0.86), which are critical for minimizing false negatives in medical diagnostics. These results validate 

the strategic placement of XGBoost within the second tier of the proposed diagnostic system, where high precision and 

sensitivity are essential for clinical decision-making. 

 
Figure 1 comparative performance of Logistic Regression and XGBoost6.2 Feature Importance Distribution 
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RFE-Based Feature Importance (Pie Chart Representation): 

 
Figure 2 Recursive Feature Elimination 

 

To visualize feature relevance, a pie chart was used to represent the distribution of feature importance as derived from 

Recursive Feature Elimination (RFE). The chart reveals that cholesterol accounts for the largest share of predictive 

importance (28%), followed by age (22%), chest pain type (20%), and both resting blood pressure and maximum heart 

rate (15% each). These findings reinforce the well-documented clinical understanding that lipid profiles and 

hemodynamic indicators are core determinants in cardiovascular risk assessment. The visual format not only aids in 

interpretability but also facilitates communication with clinical stakeholders who may prefer intuitive, data-driven visuals 

over abstract statistical measures. 

 

6.3. ROC Curve for All Models 

 
Figure 3 Receiver Operating Characteristic curves for all four models 
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Plotting the ROC curves of Logistic Regression, Random Forest, Gradient Boosting, and XG Boost models offers a clear 

visualization of their trade-offs between sensitivity and specificity at various thresholds. This comparison reinforces the 

superior discriminative ability of the XG Boost model, supporting its use in clinical-grade diagnosis. 

 

6.4 Confusion Matrix for XG Boost Model 

 
Figure 4 Presents the confusion matrix for XG Boost 

 

A confusion matrix for the XG Boost model provides a detailed breakdown of true positive, false positive, true negative, 

and false negative predictions. This plot enhances understanding of the model's diagnostic precision and error 

distribution, crucial for clinical validation and trust.  

 

6.5 SHAP Summary Plot 

 
Figure 5 SHAP summary visualization 
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A SHAP summary plot displays the impact of individual features on the model’s output, highlighting cholesterol, chest 

pain type, and maximum heart rate as dominant contributors. This visualization promotes transparency and aligns model 

insights with established cardiovascular risk factors, thus supporting clinical interpretability. 

 

6.6 Feature Correlation Heatmap 

 
Figure 6 Correlation matrix between input features 

 

A heatmap depicting correlations among input features helps detect multicollinearity and feature interdependencies. This 

knowledge guides more informed feature selection and model refinement, improving overall robustness and reliability.  

 

VII.      DISCUSSION AND FUTURE WORK 

 

This study underscores the viability and value of integrating machine learning (ML) with explainable artificial 

intelligence (XAI) to build a scalable, interpretable system for heart disease detection. The two-tiered diagnostic 

framework—comprising a lightweight, mobile-friendly screening model and a hospital-grade diagnostic model—proves 

effective in balancing the trade-off between accessibility and precision. Logistic Regression serves as a feasible solution 

for frontline health workers and rural deployment, while XGBoost delivers high accuracy and transparency through 

SHAP-based explanations in more sophisticated clinical environments. 

 

Despite these promising results, future research should aim to extend system capabilities. First, integration with wearable 

devices such as smartwatches and fitness trackers could enable real-time cardiac risk monitoring through continuous data 

streams, further personalizing risk predictions. Second, embedding the model into telemedicine platforms would facilitate 

remote diagnostics, especially in underserved communities. Lastly, real-world validation is crucial; field testing in rural 

health camps and outpatient departments will offer practical insights into the system’s usability, robustness, and impact 

on clinical workflows. 

 

Continued enhancement of the model through federated learning, multimodal data integration (e.g., genomics, imaging), 

and adaptive retraining protocols will ensure it remains relevant in rapidly evolving healthcare ecosystems. 

 

VIII.        CONCLUSION 

 

This research puts forth a novel, practical approach to heart disease detection by combining machine learning with 

explainable AI in a dual-tier system designed for both rural and clinical settings. The integration of SHAP interpretability 

tools enhances transparency, offering not just predictions but also insights that physicians and health workers can trust. 

Our screening model, lightweight and accessible, brings diagnostic capabilities to mobile health platforms, while the 

advanced XG Boost model supports nuanced, accurate diagnostics in professional medical environments. 
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More than just a technical accomplishment, this system is a step toward equitable healthcare. It addresses the long-

standing divide between urban and rural health resources by making high-quality diagnostic tools available in 

underserved areas. The system's adaptability, grounded in real-world constraints, reflects a deep awareness of clinical 

realities and patient needs. 

 

Looking ahead, integrating continuous data from wearables and expanding to multi-modal data—including genomic and 

lifestyle factors—can elevate this framework into a personalized, real-time risk monitoring system. As AI in healthcare 

matures, tools like this not only enhance diagnostic precision but also bring us closer to a future where everyone, 

regardless of geography or income, has access to timely, explainable, and effective heart disease screening. 
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