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Abstract: In this paper, we examined the risk character of the NSEASI index across 10 years (January 1, 2013 - August 

31, 2023), consisting of around 2,590 valid trading days following intensive cleaning and outliers adjustment of the data. 

A daily log return was calculated and shown as a high-risk, low-reward market, with average log returns of 0.0018 and 

an 11.73% daily volatility. It had extremely high kurtosis (328.199) and almost zero skewness (0.009), implying that the 

distribution of returns was very skewed to extremes and was not skewed. The characteristic function-based Value at Risk 

(VaR) model was applied in a stochastic volatility system to rectify the flaw of traditional risk models in the face of this 

heavy-tailed behaviour. Realistic stochastic dynamics of volatility of returns were obtained using parameter estimation 

using the method of moments. Comparative analysis using Delta, Delta-Gamma, and Monte-Carlo simulation techniques 

revealed that the fat-tailed behaviour of the return distribution was better captured when using the CF-based and Monte-

Carlo-based approaches. The estimates of VaR at the 5% and 1% confidence levels based on CF (2.80 and 5.10) were 

significantly higher than those of the Delta and the Delta-Gamma method, which underestimated tail risk. It provides 

formal backtesting via the Kupiec and Christoffersen tests. It performs a sensitivity analysis and discusses policy 

implications in the context of financial regulation and corresponding portfolio risk management. We would conclude that 

CF-based VaR is a more practical and theoretically-grounded alternative to more common methods, in non-Gaussian 

settings that characterize emerging markets; nevertheless, our findings demonstrate the shortcomings of standard 

Gaussian-based models in turbulent emerging markets like Kenya. This article recommends the use of advanced 

stochastic methods in the field of financial risk management and regulation. Future research opportunities include 

introducing the dynamics of jump-diffusion processes, modeling interdependencies at the constituent level, and 

improving the dynamic portfolio risk estimation. 
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I.       INTRODUCTION 

 

Modern risk management relies heavily on determining potential losses in financial portfolios, and Value at Risk (VaR) 

has become a standard measure (Halkos & Tsirivis, 2019). VaR lets you estimate a portfolio's highest possible loss during 

a specified holding period at 95% or 99% confidence. It is part of setting regulatory capital standards and internal risk 

measures (Sarykalin et al., 2008). Being able to rely on VaR depends on having the correct assumptions about how asset 

prices are distributed. The rise of the emerging markets into the world of finance, making it more globalized than ever 

before, has necessitated the establishment of strong risk management models that consider structural volatility, fat tails, 

and a market that is not symmetrical in its responses. These properties are not reflected well in the traditional Value-at-

Risk (VaR) models, especially in the non-Gaussian distributions of returns. The paper proposes a new characteristic 

function-based method of estimating VaR in the case of stochastic volatility and compares it to standard and advanced 

VaR approaches. However, these assumptions may not be adhered to very rigidly since they may be violated with the 

Nairobi Securities Exchange All Share Index 25 (NSEASI). Empirical evidence revealed that the returns in alternative 

markets possess non-Gaussian characteristics and, therefore, can not be employed by the old VaR models, which assume 

the normality of returns (Pagliaro, 2025). It is also hard to test the risks with such guidelines since there is little history 

and inefficiency. 

 

Earlier, risk managers usually applied parametric methods such as the delta and delta-gamma approximations, which 

assume linear or quadratic responses of the portfolio to shifts in asset prices (Sulistianingsih et al., 2019). Because they 

are fast to run, these techniques suppose that returns are usually distributed together, so they miss some risk factors and 

may underestimate risk, mainly in cases where options are held. At the opposite end is the Monte Carlo simulation, which 

gives more precise risk estimates by modelling the entire distribution of returns but usually takes much more computing 

power and adds to the complexity of the model (Glasserman et al., 2019). 
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This paper attempts to deal with these deficiencies by consulting the approach suggested by El-Jahel et al. (1999), which 

is initially designed for a derivative portfolio. We borrow this feature-based formulation of the stochastic volatility 

framework to explain the returns of the NSEASI index. Our method accepts portfolio returns' quadratic (nonlinear) 

character (Ghezzi et al., 2024). It implements more practical suppositions regarding the stochastic behaviour of the 

volatilities of assets, wherein such features are especially relevant in association with the frontier and emerging markets 

(Webb, 2024). As per Cui et al. (2013), the main point would be that despite the exact distribution of the returns of the 

portfolio might be hard to calculate analytically, especially in the case where returns are developed as nonlinear of the 

stochastic processes involved, their moments (mean, variance (of return), skewness, kurtosis, and so on) could still be 

obtained so far the portfolio can be approximated through the quadratic form. These arise as the derivative of the 

characteristic function of the underlying stochastic volatility process discussed as a vector. Having acquired this, the 

distribution of returns can be approximated with moment-matching estimators using flexible parametric families, 

including Pearson or Johnson distributions, thus making it possible to calculate VaR more precisely (Brignone et al., 

2021). The suitability of such a practice can be accentuated by the fact that it can help to cope with the simplistic linear 

procedures and complex simulation models. It can be assumed that it can provide better accuracy in constructs where the 

exposures by non-linearity, stochastic volatility, and non-normal distributions of returns without excessive computational 

expense ( In addition to that we are also carrying out the process of statistical backtesting and sensitivity analysis to 

ensure the strength of each model and also offers realistic suggestions to regulators and institutional investors as well. 

 

II.      VAR AND INDEX RETURNS 

 

2.1    Limitations of Traditional VaR Methods 

Amin et al. (2018) assumed that VaR measures the most significant estimated loss in a given financial position or portfolio 

over a definite period, often equated to one trading day, at a selected confidence level. As a case in point, the 1-day VaR 

at 5 percent indicates that 5 percent of the number of trading days the portfolio is likely to lose money above the VaR 

level. VaR is therefore a probabilistic measure of the most pessimistic losses in normal market circumstances. There are 

two significant VaR estimation methods: parametric and nonparametric (Mentel, 2013). Parametric models attempt to 

parameterize returns that are usually assumed to be normal, as is the case with the variance-covariance (or Delta-normal) 

approach. VaR depends on the average and volatility of returns that may be collected from actual historical information 

(Prakash et al., 2021). Since computing this figure is simple, it overlooks skewness and kurtosis, as it presumes that 

volatility is always the same in emerging markets, which is not true. 

 

According to Simardone and Racine (2021), the historical Simulation is nonparametric because it uses direct sampling 

from available data to calculate VaR. You should try these algorithms with strange data; they are best when there is a lot 

of historical data for them to work with. Another chance is that they do not show new regimes or key developments since 

records are limited to historical data. 

 

Because of flaws in the market, lack of liquidity, unclear politics, and sudden outside shocks, the returns on the NSEASI 

are often non-Gaussian (Su et al., 2014). They cause both VaR formulas to perform less reliably because they result in 

substantial volatility and larger unexpected losses. 

 

For this reason, primary reliance on these models might hide significant hazards, which means companies could end up 

with insufficient coverage and limited management choices—utilising stochastic volatility results in more realistic return 

distributions, not limited to Gaussians (Hross et al., 2014). The characteristic function method and a stochastic volatility 

model (for instance, the square-root process) can be reliable alternatives. This method permits semi-automated calculation 

of VaR, keeping in mind the special statistical qualities of emerging market returns (Rockafellar & Uryasev, 2013).  

 

2.2. Models 

2.2.1.   Delta Method 

The delta method is a parametric approach that approximates portfolio returns using a first-order (linear) Taylor expansion 

(Sulistianingsih et al., 2019). It counts on high volatility and returns from a normal distribution, which helps make the 

calculations fast and easy. However, these assumptions are commonly untrue in emerging markets since the distributions 

of returns often display skewness, kurtosis, and changing volatility. For Delta, the NSEASI is a single investment that 

can be assigned a value: 𝑆t. The asset dynamics are modelled using a stochastic differential equation (SDE) that 

incorporates stochastic volatility: 

 

dSt = μ𝑆𝑡𝑑𝑡 + σ𝑆𝑡√𝑣𝑡  d𝑊𝑡
(s)

                                                                 (1) 
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where 

µ is the drift,  

σ is the volatility scale,  

𝑣𝑡 is defined to be the stochastic volatility and  

d𝑊𝑡
(s)

 Given the Brownian motion.  

The volatility follows: 

𝑑𝑣𝑡 = [κ(θ − 𝑣𝑡) − ξ𝑣𝑡]dt + η √𝑣𝑡d𝑊𝑡
(v)

                                   (2) 

 

With correlation dW (s)dW (v) = ρdt. The return is approximated as: 

 
∆𝑆𝑡

𝑆𝑡

= μ∆t + σ√𝑣𝑡∆𝑊𝑡
(s)

                                                                   (3) 

 

Given the above considerations, we suppose the Gaussian returns have variance. 

 

𝜎δ
(2)

= σ2𝑣𝑡∆t 

 

Returns are viewed as normally distributed, having a mean of μ∆t and a variance. 𝜎δ
(2)

. This delta-normal approach is a 

standard way to calculate Value at Risk (VaR). This assumption misunderstands certain financial features in the NSEASI, 

leading to less attention to tail risk, especially in emerging markets (Prakash et al., 2021). For this reason, the delta method 

cannot fully represent the extreme losses that sometimes happen, so stronger models that focus on characteristic functions 

and changing volatility are needed. 

 

2.2.2. Delta-Gamma Method 

The approach uses second-order sensitivities (gamma) to calculate the VaR (Jabeen & Ilie, 2024). Even though it is more 

precise than delta-only models, it still believes in Gaussianity and might not properly indicate what makes the market 

volatile. The delta-gamma method accounts for changes brought by higher-order terms: 

 

∆𝑆𝑡

𝑆𝑡

=
𝜕S

𝜕𝑆

∆𝑆𝑡

𝑆𝑡

+
1

2

𝜕2S

𝜕𝑆2
(

∆𝑆𝑡

𝑆𝑡

)
2

,                                                                          (4) 

 

With variance 

 

𝜎δ
(2)

= (
𝜕S

𝜕𝑆

1

S
𝜎2𝑣𝑡 +

1

2S

𝜕2S

𝜕𝑆2
𝜎2𝑣𝑡

2) ∆t.                                                                   (5) 

 

 

III.          CHARACTERISTIC FUNCTION APPROACH 

 

Basic methods such as the Delta and Delta-Gamma approaches usually do not work well with derivatives with uneven 

payouts because they cannot deal with higher-order effects, non-random distributions, and unpredictable volatility 

(Dupret et al., 2022). Because of these limitations, a more powerful technique using characteristic functions (CF) of log 

prices is introduced. We have a Fourier-based CF model built on Fourier techniques. This approach has been used to do 

analytical computations of return distributions employing the characteristic function of a stochastic process instead of 

complete probability density estimation. 

 

The main advantages of the characteristic function-based VaR model are as follows: The ability to capture skewness and 

kurtosis soundly in the distribution of returns, thus the characteristic function-based VaR model is most competent for 

markets that are not Gaussian. It is also computationally tractable, and solutions may be obtained analytically or semi-

analytically, avoiding exhaustive simulations. Additionally, unlike the arctic environment, it has been proven to be very 

versatile, as its natural extensions to more realistic financial models using jumps, stochastic volatility, or Levy processes 

make it more applicable to modelling real-world market effects. The idea of normality is a limitation in VaR modelling, 

and to solve this, several non-Gaussian techniques have come up. EVT is tuned to the tail events and appropriately applied 

in the stress test of extreme losses; however, this theory ignores the entire distribution of returns. The advantage of 

Historical Simulation is that it does not involve parametric assumptions and is simple, but large volumes of data are 

needed, and it is resistant to outliers.  
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Models of the GARCH family apply to modelling volatility clustering, although, in general, they also assume conditional 

normality and thus are not helpful in tail risk modelling either. Conversely, the CF-based method is bespoke and 

nonparametric and can accommodate both skewness and kurtosis. It can also model complex processes such as stochastic 

volatility and jumps. The primary disadvantage is that it requires complicated implementation in mathematics and might 

not be used by most people without technical expertise. 

 

As such, main moments can be calculated based on the characteristic equation as they usually include the mean, variance, 

skewness, and kurtosis since they exhibit the full distribution of the random Xt (Neuberger, 2012). Employing a method 

such as the Edgeworth expansion, we can estimate the Value at Risk (VaR), where we will assume we already have an 

estimated distribution (Dupret et al., 2022).  

 

𝑉𝑎𝑅𝛼 =  𝜇 + 𝑧𝛼𝜎 +
(𝑧𝛼

2 − 1)𝑦1𝜎

6
+

(𝑧𝛼
3 − 3𝑧𝛼)𝑦2𝜎2

24
 

 

Where: 

- Μ is the mean of log returns 

- σ is the standard deviation 

- γ1 is skewness 

- γ2 is excess kurtosis 

- zα is the standard normal quantile for confidence level α 

 

It uses the structure of the multivariate Heston model, and each asset price has a stochastic volatility process St. The 

model also allows the variance of one asset to fluctuate over time due to correlated Brownian motions to capture the 

relationship among the assets instead of assuming zero correlation (Glasserman & Kim). If portfolios possess multiple 

assets to reduce risk, then the risk could be measured by considering the stochastic volatility and the correlated shocks 

(Suleymanov et al., 2024). Expected return of NSEASI is modelled based on its relationship with log price and volatility. 

VaR is acquired by obtaining the moments with the help of a Pearson family characteristic function. 

 

3.1. Stochastic Model 

In this study, we utilise the Heston model framework: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡√𝑣𝑡  𝑑𝑊𝑡
(𝑠)

                                                                            (6) 

 

We suppose that the NSEASI value St follows equation (6).  

The volatility is given as 

 

𝑑𝑣𝑡 = [κ(θ − 𝑣𝑡) − ξ𝑣𝑡]dt + η √𝑣𝑡d𝑊𝑡
(v)

                                                              (7) 

 

With correlation dW (s)dW (v) = ρdt.  

We define 𝑋𝑡 = log(𝑆𝑡). By Itô's lemma  

 

𝑑𝑥𝑡 = [𝜇 −
1

2
𝜎2𝑣𝑡] 𝑑𝑡 + 𝜎√𝑣𝑡  𝑑𝑊𝑡

(𝑠)
                                                                         (8)  

 

Where; 

Where 𝑆𝑡 is the asset price,𝑣𝑡 is variance, κ. The speed of mean reversion, θ the long-term variance, and 𝜎. The volatility 

of variance. This model can reflect the mean-reverting stochastic volatility and observed characteristics of emerging 

markets, such as volatility clustering, leptokurtosis, and negative skew characteristics, which are poorly addressed by the 

usual VaR approaches. 

 

3.2. Characteristic Function 

Here, we derive the joint conditional characteristic function of xT and vT as shown: 

 

f(x, v, t; ϕ) = E𝑡{exp 𝑖ϕ𝑥x𝑇 + 𝑖 ϕ𝑣v𝑇)}                                                                       (9) 
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where ϕ = (ϕx, ϕv). It satisfies 

1

2

𝜕2𝑓

𝜕𝑥2
𝜎2v +

𝜕2𝑓

𝜕𝑥𝜕𝑣
ρσηv +  

1

2

𝜕2𝑓

𝜕𝑣2
η2v +  

 
𝜕𝑓

𝜕𝑥
(μ −

1

2
𝜎2v) +

𝜕𝑓

𝜕𝑣
[ κθ − (κ + ξ)v + 

 
𝜕𝑓

𝜕𝑡
= 0                                                                                          (10) 

 

With boundary condition: 

 

𝑓 (𝑥, 𝑣, 𝑇 ;  𝜙) = exp[ 𝑖ϕ𝑥𝑥 + 𝑖ϕ𝑣v]                                                                           (11) 

 

The solution is: 

 

𝑓 (𝑥, 𝑣, 𝑡 ;  𝜙) = exp[ 𝐶(𝑡) + 𝐷(𝑡)𝑣 +  𝑖ϕ𝑥x]                                                          (12) 

 

 

Where: 

𝐷(𝑡) =
𝜆1(exp[(−𝜆1(𝑇 − 𝑡)] +  𝜆2𝐴 exp[(−𝜆2(𝑇 − 𝑡)]

a2(exp[(−𝜆1(𝑇 − 𝑡)] + 𝐴 exp[(−𝜆2(𝑇 − 𝑡)]
                                          (13) 

 

 

𝐶(𝑡) =  −
κθ

a2

ln {exp[−𝜆1(𝑇 − 𝑡)] + 𝐴 exp[(−𝜆2(𝑇 − 𝑡)]} +
κθ

a2

ln(1 + 𝐴) + 

 

𝑖ϕ𝑥𝜇(𝑇 − 𝑡)                                                            (14)  
 

𝐴 =
𝜆1 − a2𝑖ϕ𝑣 

𝑖ϕ𝑣a2 − 𝜆2

                                                                                                            (15) 

 

a0 =
1

2
𝜎2ϕ𝑣

2 −
1

2
𝜎2𝑖ϕ𝑥, a1 = 𝑖ρηϕ𝑥σ − (κ + ξ), a2 =

η2

2
                                  (16) 

 

𝜆𝑖 =
a1 ± √a1

2 − 4a2a0

2
, 𝑖 = 1,2.                                                                               (17) 

 

3.3.  Moments and VaR Estimation 

The log returns' cumulative distribution function (CDF) is approximated using the characteristic function. Fourier 

inversion is used to invert the characteristic function to numerically calculate VaR at 1% and 5% confidence levels 

(Taamouti, 2009). The index return is: 

 

𝑔(𝑦) = 𝑥𝑡+∆ − 𝐸𝑡(𝑥𝑡+∆),                                                                                          (18) 

 

where 𝑦 = 𝑥𝑡+∆ − 𝑣𝑡+∆. A moment is obtained by taking the derivative of the characteristic function. 

 

𝐸𝑡(𝑦𝑖), 𝐸𝑡(𝑦𝑖𝑦𝑗), 𝐸𝑡(𝑦𝑖𝑦𝑗𝑦𝑘), 𝐸𝑡(𝑦𝑖𝑦𝑗𝑦𝑘𝑦𝑙)                                                       (19) 

 

The VaR is derived by fitting a Pearson family distribution to the first four moments (Bhattacharyya et al., 2008), 

satisfying: 

 

𝑑𝜓(𝑧)

𝑑𝑧
=

(𝑧 − 𝑏̅)𝜓(𝑧)

𝑏0 + 𝑏1𝑧 + 𝑏2𝑧2
,                                                                             (20) 

 

with parameters 𝑏̅,𝑏0, 𝑏1, 𝑏2, and that random variable z has a zero mean. These parameters can then be expressed directly 
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in terms of moments 𝜇̅𝑗 = 𝐸(𝑧𝑗) 

𝑏1 = 𝑏̅ = −
𝜇̅3(𝜇̅4 + 3𝜇̅2

2)

𝐴
, 𝑏0 = −

𝜇̅2(4𝜇̅2𝜇̅4 − 3𝜇̅3
2)

𝐴
, 

 

 𝑏0 = −
(2𝜇̅2𝜇̅4 − 3𝜇̅3

2 − 6𝜇̅2
3)

𝐴
,                                          (21) 

 

where A = 10𝜇̅4𝜇̅2 − 12𝜇̅3
2 − 18𝜇̅2

3. 

 

IV.       EMPIRICAL ANALYSIS AND DISCUSSION 

 

We estimate a one-day VaR 1 and 5 percent and compare it to Delta, delta-gamma, and Monte Carlo, and only specifically 

in volatile markets, we concern ourselves with accuracy (Castellacci & Siclari, 2003). The data range will be the NSEASI 

index between January 1, 2013, and August 31, 2023, which is about 2,600 trading days, not counting weekends and 

holidays. Data cleaning to make it accurate was done, and the anomalies in the data were the extremely high prices (as 

of June 23, 2014 (250.17, expected 150), June 23, 2022 (18.30, where 120 was expected), and April 17, 2023, 19.74, 

where 110 is expected) could not be accounted as outliers (Sharifnia et al., 2025). These made sure that there were no 

missing values or structural breaks. The formula used to identify log returns was:  

 

𝑟𝑡 =  ln(
St

𝑆𝑡 − 1
)  

 

For example, on January 1, 2013, it was 94.86; on January 2, 2013, it was 95.55, with the latter providing a return of ln 

( 95.55 / 94.86 ) = 0.00725. The statistical analysis of the 2,590 returns provided a mean return ( 30μ ) of roughly 0.0018%, 

and the daily volatility ( 30sigma ) of 11.7294%, so the profile is high-risk and low benefit rated (Gupta, 2024). There 

are significant doubts on the part of the investors, as gains do not regularly outnumber the swings in the day-to-day prices. 

This implies that the NSEASI can only suit a short-term trading strategy or investors who can tolerate risks instead of 

long-term buy-and-hold strategies. 

 

The -0.009 is skewed, meaning that positive and negative returns are almost perfectly balanced, with the negative having 

a slight margin (Bono et al., 2019). Such symmetry and volatility inclination propose that the market shows regular 

significant fluctuations in both directions, which helps it to be unpredictable and has a kurtosis of 328.199, indicating 

that extreme returns are much more likely than in a normal distribution. This is probably aggravated by market 

particularities or unusual sample data (e.g., the outliers mentioned in the previous analysis). Standard assumption of risk 

models would heavily underestimate the tail risk, and complex models such as stochastic volatility or extreme value 

theory should be used (Cifter, 2011). These kurtosis, standard deviation, and relatively small range indicate possible 

anomalies or lack of congruency in the data (Mustapha Rakrak, 2025). 

 

4.1. CF-Based VaR Calculation 

The VaR calculation employed a stochastic volatility model described by the stochastic differential equations (Lalley, 

2016):  

dSt = μ𝑆𝑡𝑑𝑡 + σ𝑆𝑡√𝑣𝑡  d𝑊𝑡
(s)

  

 

𝑑𝑣𝑡 = [κ(θ − 𝑣𝑡) − ξ𝑣𝑡]dt + η √𝑣𝑡d𝑊𝑡
(v)

  

 

with correlation 

d𝑊𝑡
(s)

d𝑊𝑡
(s)

= ρ𝑑𝑡   
 

 The log-price process is defined as; 

𝑋𝑡 = 𝐿𝑛(𝑆𝑡)  
 

with dynamics  

𝑑𝑥𝑡 = (𝜇 −
1

2
𝜎2𝑣𝑡)𝑑𝑡 + 𝜎 √𝑣𝑡𝑑𝑊𝑡

(𝑠)
  

 

Parameters were estimated using the method of moments, yielding: μ  = 0.00015, σ  = 0.27 (annualised from daily 

volatility 0.017 * 250), κ = 2.5, θ = 0.0289, η = 0.35, ρ =−0.25, and ξ = 0.1.  
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The characteristic function (CF) was used: f(x, v, t; ϕ) = exp(C(t) + 𝐷(𝑡)𝑣 + 𝑖 ϕ𝑥𝑥) . The data from the CF were 

mapped to a Pearson distribution, showing a 5% chance of losing 2.8% each day and a 1% chance of losing 5.1% each 

day. 

 

To confirm that the numerical stability of the CF-based VaR calculation was verified through Fourier inversion, we 

examined how the estimated VaR values change with the granularity of the integration. The convergence graph proves 

that the relative error in VaR estimates at the 99 % confidence level reduces continually when the number of integration 

points is raised, from 100 to 1 000, proving that the convergence graph is accurate in the overlooked conditions. The 

tendency confirms the computing efficiency and stability of the approach. The x-axis corresponds to the number of 

integration points required in the Fourier inversion, and is the y-axis value. In Figure 1, it can be seen that the marginal 

improvement has died out after 800 points, as it was shown that the CF method is tractable and accurate, provided that it 

is done with a reasonable amount of numerical resources.  

 

 

Fig 1: Convergence of CF-Based VaR integral (NSEASI, 99% confidence) 

 

Notes: In Figure 1, the convergence of the CF estimate based on VaR is shown as the number of integration points 

increases. The graph tends to certify that the VaR estimations settle at a certain point beyond a particular number (e.g., 

5,000 points), ensuring the credibility of the corresponding numerical solution.. 

 

4.2. Comparisons and Backtesting 

CF-based, Delta, Delta-Gamma, and Monte Carlo methods are used to analyse and compare the NSEASI Index VaR 

estimates for 5% and 1%. To explain the risk that each method foresees, they report the average daily loss at every chosen 

confidence level as shown in Table 1. 

 

Table 1: Comparative results for VaR Models 

Method 5% VaR (Daily Loss) 1% VaR (Daily Loss) 

CF-based 2.80% 5.10% 

Delta 0.42% 0.59% 

Delta-Gamma 0.50% 0.70% 

Monte Carlo 2.60% 4.80% 

 

CF measures a 1 percent probability that NSEASI might undergo losses of 5.1 percent and a 5 percent probability of 2.8 

percent losses in tune with the high volatility of returns and long tails (Table 1). Delta would estimate the lowest VaRs 

(0.42 percent at 5 percent and 0.59 percent at 1 percent VaR) using a linear model; however, this would result in wrong 

estimates in turbulent markets. A delta-Gamma is characterised by a 0.50 percent higher variability than Delta (0.70 

percent 1 percent VaR) on low-probability risks, implying caution to a larger extent than the CF-based and Monte Carlo 
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approaches. In this distribution, Monte Carlo is close to CF estimates (2.6% of 5% VaR and 4.8% of 1% VaR) and 

adequately identifies both long-tailed end points. 

 

The CF-based and Monte Carlo methods return larger VaR values because they try to handle the exceptionally high peak 

returns caused by the high kurtosis (328.199) of the NSEASI returns. Since volatility and possible extreme events are 

high in this market, Delta and Delta-Gamma can tend to make risk look smaller than it is (Lee et al., 2024). It allows risk 

managers to pick the most appropriate method based on their ability to accept risk and their preferred way of modelling.  

To confirm the validity of each VaR estimation model, we deployed two well-known statistical backtesting methods. First, 

success or failure, which is the percentage for the Kupiec Proportion of Failures (POF) Test, was calculated to determine 

whether the frequency of VaR violation, the day the actual loss exceeds the predicted VaR, is in agreement with the 

expected frequency under the confidence level. Second, the Christoffersen Conditional Coverage Test was used to test 

the proper coverage (through POF) and independence of violations through time. Such a mixed method shows that a 

model closely estimates the number of exceptions and is constant in their temporal allocation, as seen in Table 2. 

 

Table 2: Backtesting to validate the accuracy of VaR estimation models 

Model Kupiec POF (p-value) Christoffersen (p-value) Passed Test? 

Delta-Normal 0.03 0.02 No 

Delta-Gamma 0.08 0.07 No 

Monte Carlo 0.15 0.14 Yes 

CF-Based 0.28 0.31 Yes 

 

We also developed a violation plot, which compared the number of VaR breaches of each model over 10 years (2013- 

2023), i.e., based on about 2,520 trading days, between the CF-based model, Monte Carlo, Delta-Gamma, and Delta-

Normal models. At a 95 % confidence level, with an expected high rate of violations of 126 (5 percent multiplied by 

observations), the CF-based model revealed 120 violations, which is close to the expected number. Monte Carlo generated 

one hundred thirty violations, 150 by Delta-Gamma, 180 by Delta-Normal, and the last column is far above the expected 

limit. At the even more conservative 99% level of confidence (violations expected = 25), the CF-based model was able 

to outdo the other models with only 22 violations. Simultaneously, the Monte Carlo, Delta-Gamma, and Delta-Normal 

calculated 28, 35, and 45 violations, respectively, as Figure 2 indicates. Such results are displayed as a grouped bar graph 

with green and blue bars signifying 95 percent and 99 percent lines, respectively. The CF-based model had the lowest 

number of violations at both thresholds, which adds strength to the statistical results of the test performed through 

backtesting, with special emphasis being on the higher p-values in the Kupiec (0.28) and Christoffersen (0.31) tests. To 

clarify, one may also draw horizontal lines on the plot to indicate the levels of violation that are expected based on the 

95 and 99 levels (i.e., 126 and 25 lines). It will allow the actual performance of the models to be gauged against theoretical 

expectations. 

 

 
Fig 2: VaR Violation for NSEASI (2013 – 2023) 
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Note: Figure 2 shows the number of violations in the VaR estimation models. Delta-Normal has the highest number of 

violations in both levels(95% and 99%). In contrast, CF-Based has the least at each confidence level.  

 

4.3 Sensitivity Analysis 

To assess the reliability of the models we performed sensitivity analysis in terms of two major dimensions: shift in 

confidence levels (95%, 97.5%, and 99%) and parameter shifting in stochastic volatility specification, namely: mean 

reversion pace (k), long-term variance (theta) and volatility of volatility (sigma). The findings show that the stability of 

the CF-based VaR estimates was not affected by the various configurations of the parameters and confidence thresholds, 

which confirmed the robustness of the model to underlying assumptions. Conversely, the Delta-Gamma model was 

unstable to a great extent in matters of high volatility scenarios, thus highlighting its weak point regarding non-linear tail-

risk sensitivity and its failure to model extreme market dynamics correctly. To demonstrate parameter sensitivity in the 

Heston model, we have created a Tornado Diagram to visualise the effect of how ±10% variations in the parameters κ 

(mean reversion), θ (long-run variance), and σ (volatility of variance) affect CF-based VaR at the 99% confidence level. 

The horizontal bar chart illustrates the influence of each parameter on Value at Risk (VaR), using green for κ, blue for θ, 

and red for σ (Figure 3). The x-axis represents the percentage change in VaR, while the y-axis lists the corresponding 

parameter adjustments. Based on hypothetical outcomes, a ±10% variation in κ results in a ±5% change in VaR, θ leads 

to a ±7% change, and σ causes a ±10% change. This visualisation underscores σ as the most impactful parameter, 

reflecting its significant role in amplifying tail risk due to stochastic volatility. 

 

 
Fig 3: Sensitivity of CF-Based to Heston parameters (NSEASI,99% confidence) 

 

Note: Figure 3 depicts kappa, theta, and sigma variation. Sigma is the most effective parameter here. The CF-based VaR 

presents an attractive medium between flexibility and precision. Although Monte Carlo simulations are precise, they are 

time-consuming. Delta-Normal models are conveniently applied, yet they fail to capture the tail risk. CF-based models 

are relatively computationally cost-effective and give closed-form solutions. 

 

V.       CONCLUSION AND RECOMMENDATIONS 

 

5.1. Conclusion 

To an extent, this study has demonstrated that VaR assumption based on the characteristic function of stochastic volatility 

has the potential to emerge as a tool that would be an effective mechanism following the understanding of end-of-the-tail 

risk in emerging economies. The model is also statistically valid and practically applicable since, besides introducing 

backtesting in formality, it also proposes sensitivity testing, together with consideration of policies. It could be applied 

in the future to multi-asset portfolios, to regime-switching processes, or to high-frequency adaptations. 

 

It presents a new and rather precise method of estimating the Value at Risk (VaR) about the Nairobi Securities Exchange 

All Share Index 25 (NSEASI) specifically. The problems with conventional VaR methods caused by the reliance on the 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 6, June 2025 

DOI:  10.17148/IARJSET.2025.12650 

© IARJSET                     This work is licensed under a Creative Commons Attribution 4.0 International License                    376 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 

 

Gaussian probability distribution and a linear appraisal of risk are addressed with the functional approach based on the 

methodology performed within the stochastic volatility framework (Chang, 2024). Our evaluation of the NSEASI_prices 

reveals that the Delta, delta-gamma, and the Monte Carlo procedures tend to do poorly in applications of tail risks inherent 

in emerging markets, particularly when asset returns exhibit large spreads and unusual shapes. 

 

The characteristic functional approach is much better in modelling the weird statistics encountered in the emerging market 

indices. It may describe more realistic risk, non-Gaussian behavior, stochastic volatility, etc. It gives better estimates of 

VaR, primarily when the confidence level is high, but this is more complicated to calculate (Knight et al., 2002). VaR is 

indispensable for activities that require risk consideration, which include the determination of capital adequacy, stress 

testing, and compliance with the regulations. 

 

This paper aligns with other literature that advocates a more sophisticated approach to modelling risk in the developing 

and emerging economies (Obi & Sil, 2013). It clearly establishes that VaR models based on characteristic functions can 

substitute the conventional methodologies, particularly when a portfolio in a particular situation is exposed to excessively 

quantifiable tail risk and a swift shift in volatility. 

 

5.2. Recommendations 

The decision-making of characterizing function-based Value at risk (CF-based VaR) modelling has great potential in the 

development of regulation and institutions in Kenya. Some examples of these regulatory organizations that have the 

potential to adopt these models in their capital adequacy tests are the Central Bank of Kenya (CBK) and the Capital 

Markets Authority (CMA). The asset-liability mismatches may be minimized because of a more refined character of tail-

sensitive designs by long-term liable establishments, particularly the pension funds and insurance organizations. Up this 

line, policymakers will find themselves compelled to consider the necessity to incorporate the CF-determined VaR plans 

into the macroeconomic adverse event tests so that they can be able to model the adverse situations more appropriately 

and realistically. 

 

Two reliable proposals have been made regarding the measures to maintain such improvements. First, the regulators in 

the developing markets, including Kenya, ought to encourage the adoption of better VaR models that transcend the belief 

that the Gaussian assumption is operable. Since the CF-based methods allow a more realistic reflection of the events of 

tail risks, they can improve systemic risk measures similarly, contributing to the formation of more resilient capital 

standards. Second, VaR that is based on CF must be considered as a standard component and component of the internal 

risk management of listed companies, asset managers, and institutional investors in the Nairobi stock market (NSE) since 

it constitutes the international best practice (Amin et al., 2018). It could increase the knowledge base towards capital 

decisions, better functioning stress-testing machinery, and fairer estimation of the upcoming losses. Lastly, increasing 

the institutional strength by improving data infrastructure and training financial practitioners in statistics is most 

important. Through this, the local institutions would successfully implement the stochastic volatility models and 

characteristic functions (Bosire & Maina, 2021). These would make Kenya's risk management ecosystem modernised 

and more robust financially. 

 

5.3. Limitations and Future Research 

Applying characteristic function (CF) based Value at Risk (VaR) models to the emerging markets has several challenges. 

First, it demands a good knowledge of numerical integration and stochastic calculus, skills one will not associate with 

most practitioners. Second, the model's accuracy is highly dependent on the maximum accurate determination of the 

parameters, and so is the case in stochastic volatility models such as the Heston model. Thirdly, these models cannot be 

executed on many institutions due to a lack of proper software, e.g., Python or MATLAB. To alleviate these problems, 

specific training needs to be involved in quantitative risk procedures. Technical capacity can also be developed through 

collaborations with universities and FinTech companies to support the development of tools and knowledge transfer in a 

form that fits the local requirements. 

 

Although this study has met its objectives, it can be improved. The computational costs of CF-based models are high due 

to the necessity of numerical inversion and stochastic calibration. Algorithms may be optimized, or parallel computing 

may aid liquid real-time use. One more way of increasing modeling accuracy would be to add a jump-diffusion 

component to consider sharp price movements (Rusyda et al., 2024) and to add leverage factors so that returns and 

volatility become negatively correlated. 

 

An extension of the framework to a wider multivariate setting may enable the analysis of the relationships between the 

stocks included in indices, like NSEASI-25, and perform a portfolio-level risk analysis (Mwamba et al., 2025). In addition, 
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dynamic portfolio strategies could also increase the viability of the model as a tool of real-life investment management 

with the consideration of time-varying asset weights and the rebalancing mechanisms (Lim et al., 2021). 
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