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Abstract: This study presents a numerical solution to the one-dimensional convection-diffusion equation, modeling the 

transport of conservative pollutants in open channel flows. Using the Crank–Nicolson finite difference scheme, the 

simulation captures the combined effects of advection and diffusion on pollutant dispersion. The model assumes a steady, 

uniform, and unidirectional flow in a straight channel with constant cross-section and no chemical reaction or lateral 

mixing. A tridiagonal matrix system is derived and solved using the Thomas algorithm to obtain the temporal evolution 

of pollutant concentration profiles. The resulting data and 3D plots highlight how pollutants gradually dilute and spread 

downstream, demonstrating the physical realism and numerical stability of the scheme. The study supports the 

effectiveness of finite difference methods in environmental modeling and opens avenues for future work on more 

complex scenarios involving multi-dimensional domains or reactive transport phenomena. 
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I. INTRODUCTION 

 

Pollutant transport in natural water bodies such as rivers, streams, and open channels poses significant environmental 

challenges, particularly when affected by industrial or agricultural discharge. Accurately predicting the spatial and 

temporal dispersion of pollutants is essential for water quality management, environmental impact assessment, and the 

design of mitigation strategies. Among the fundamental tools for such studies is the convection-diffusion equation, which 

mathematically describes the transport processes driven by both advection (due to fluid flow) and diffusion (due to 

concentration gradients). 

 

In the context of open channels, the pollutant is often assumed to be conservative—meaning it does not undergo chemical 

reactions or degradation—and its transport is influenced primarily by the velocity of the fluid and the dispersion 

coefficient. Numerical methods play a crucial role in solving such partial differential equations where analytical solutions 

may be difficult or impossible due to complex geometries or boundary conditions. 

 

Taylor (1922) provided a foundational understanding of diffusion in fluids by introducing the concept of dispersion due 

to continuous fluid motion. His analytical treatment of solute transport laid the groundwork for the development of the 

advection-diffusion equation. This early work established the principle that molecular diffusion, when combined with 

velocity fluctuations, leads to an effective dispersion mechanism, now known as Taylor dispersion, which remains critical 

for modeling pollutant transport in open channels. Sutton (1932) extended the theory of diffusion by applying it 

specifically to the atmosphere, proposing a model for eddy diffusion that accounts for turbulent fluctuations. Sutton’s 

contribution is significant because it introduced a conceptual framework for atmospheric turbulence affecting pollutant 

dispersion, an idea that has become central to environmental fluid dynamics and is still applied in modern turbulence 

parameterizations. Altunbaş et al. (2002) investigated eddy diffusivity of particles in turbulent flows, especially within 

rough channels. Their experimental work highlighted how channel roughness influences turbulence characteristics and, 

subsequently, the diffusivity of particles. Their findings are highly relevant for real-world scenarios such as open-channel 

flows where boundary roughness cannot be neglected. The study also emphasized the dependency of eddy diffusivity on 

flow conditions, a critical parameter for accurately modeling pollutant transport. Alfonsi (2009) provided a 

comprehensive review of the Reynolds-averaged Navier–Stokes (RANS) equations, a cornerstone in turbulence 

modeling. The RANS framework simplifies the complex nature of turbulent flows by averaging the effects of 

fluctuations, thus making it feasible to numerically simulate large-scale fluid systems. Alfonsi’s insights help bridge the 

gap between fundamental turbulence theory and practical numerical modeling approaches, which are crucial for 
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simulating pollutant dispersion in both atmospheric and water environments. Appadu (2013) focused on numerical 

solutions of the one-dimensional advection-diffusion equation using both standard and nonstandard finite difference 

schemes. The comparative study demonstrated the advantages of nonstandard schemes in preserving stability and 

accuracy, especially in advection-dominated scenarios. This work is important for the development of reliable numerical 

solvers that can simulate pollutant transport over long distances and time frames without significant numerical artifacts. 

Bedrossian et al. (2019) explored the impact of stochasticity and turbulence on the mixing properties of advection-

diffusion systems. Their rigorous analysis demonstrated that enhanced dissipation and mixing can occur almost surely 

under stochastic Navier–Stokes forcing. This study emphasized the importance of accounting for random environmental 

fluctuations in pollutant transport models and highlighted that uniform mixing can be achieved more efficiently through 

turbulent stirring mechanisms. Poudel et al.  (2023) contributed to the theoretical advancement of advection-diffusion 

modeling by considering spatially variable diffusivity. Their approach reflects the natural heterogeneity in environmental 

systems, where diffusivity is not constant due to varying flow velocities or channel properties. The study provides exact 

solutions under certain conditions, which serve as benchmarks for validating numerical methods and assessing pollutant 

spread in non-uniform media. Kafle et al.  (2024a) presented a practical application of the advection-diffusion equation 

for modeling air pollutant dispersion. Their work used real-world atmospheric parameters to simulate pollutant behavior, 

reinforcing the effectiveness of the advection-diffusion framework in environmental modeling. The findings highlight 

the importance of selecting appropriate boundary and initial conditions to capture the dynamic nature of air pollution 

events. Kafle et al. (2024b) expanded on their earlier work by integrating mathematical modeling into a broader 

atmospheric context, emphasizing pollutant behavior under various meteorological and emission scenarios. The study 

showed how mathematical models can inform policy and public health decisions by predicting concentration levels in 

different zones, which is vital for regulatory assessments. Pariyar et al. (2025) proposed a time-fractional extension of 

the advection-diffusion model, acknowledging the memory effects and anomalous diffusion observed in many 

environmental processes. Their approach captures non-local temporal behavior, offering a more generalized modeling 

tool for systems where pollutants exhibit long retention or delayed response. The fractional model enriches our 

understanding of pollutant dispersion, especially in media with heterogeneous structures. 

 

II. MATHEMATICAL MODELLING 

 

We consider a one-dimensional open channel flow where a pollutant is introduced and transported through a combination 

of convection and diffusion. 

 

Assumptions: 

(i) Flow is steady, uniform, and unidirectional. 

(ii) The pollutant is conservative (no chemical reaction or decay). 

(iii) The channel is straight with constant cross-section. 

(iv) Source is introduced at a specific location or through inlet. 

(v) No vertical or lateral variation in concentration (1D assumption). 

 

(i) Governing Equation: Let us consider one-dimensional convection-diffusion equation: 
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
= 𝐷

𝜕2𝐶

𝜕𝑥2           (1) 

Where: 

𝐶(𝑥, 𝑡): Pollutant concentration at location 𝑥 and time 𝑡 (mg/L or kg/m³) 

 𝑢: Average flow velocity in the channel (m/s) 

 𝐷: Longitudinal dispersion coefficient (m²/s) 

 𝑥: Distance along the channel (m) 

 𝑡: Time (s) 

(ii) Initial and Boundary Conditions: 

Initial Condition: 𝑪(𝒙, 𝟎) = {
𝑪𝟎 𝒊𝒇 𝒙 = 𝒙𝟎

𝟎 𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
}       (2) 

𝑪𝟎: Peak concentration 

Dirichlet  Boundary Conditions : 

𝐶(0, 𝑡) =, 𝐶(𝑙. 𝑡) = 0, 𝑡 > 0          (3) 
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III. NUMERICAL SOLUTION USING CRANK–NICOLSON SCHEME 

 

Let: 

Spatial domain:𝑥𝑗 = 𝑗Δ𝑥   , for 𝑗 = 0,1,2, … , 𝑁 

Time domain: 𝑡𝑛 = 𝑛Δ𝑡, 𝑓𝑜𝑟 𝑛 = 0,1,2, … , 𝑀  

  𝐶𝑗
𝑛 denotes the numerical approximation of  𝐶(𝑥𝑗 , 𝑡𝑛) 

Use central difference in space and average in time: 

Time derivative (average): 

𝜕𝐶

𝜕𝑡
≈

𝐶𝑗
𝑛+1−𝐶𝑗

𝑛

∆t
            (4) 

Convection term (central average): 

𝑢
𝜕𝐶

𝜕𝑥
≈ u.

𝐶𝑗+1
𝑛+1−𝐶𝑗−1

𝑛+1+𝐶𝑗+1
𝑛 −𝐶𝑗−1

𝑛

4∆x
          (5) 

Diffusion term (central average): 

D
𝜕2𝐶

𝜕𝑥2 ≈ D
𝐶𝑗+1

𝑛+1−2𝐶𝑗
𝑛+1+𝐶𝑗−1

𝑛+1+𝐶𝑗+1
𝑛 −2𝐶𝑗

𝑛+𝐶𝑗−1
𝑛

2(∆x)2          (6) 

The full equation becomes: 

𝐶𝑗
𝑛+1−𝐶𝑗

𝑛

∆t
+

u

4∆x
(𝐶𝑗+1

𝑛+1 − 𝐶𝑗−1
𝑛+1 + 𝐶𝑗+1

𝑛 − 𝐶𝑗−1
𝑛 ) =

D

2(∆x)2 (𝐶𝑗+1
𝑛+1 − 2𝐶𝑗

𝑛+1 + 𝐶𝑗−1
𝑛+1 + 𝐶𝑗+1

𝑛 − 2𝐶𝑗
𝑛 + 𝐶𝑗−1

𝑛 )    

       (6) 

This can be rewritten as a tridiagonal matrix system: 

𝐴𝐶𝑛+1 = 𝐵𝐶𝑛            (7) 

Where: 

𝐴, 𝐵: tridiagonal matrices derived from coefficients of 𝐶𝑛+1 and 𝐶𝑛 

𝐶𝑛: concentration vector at time level 𝑛 

We solve this tridiagonal system at each time step using the Thomas algorithm (TDMA). 

𝐶0
𝑛+1 = 0  

We Apply these directly in your matrix system to close the equations. 

 

IV. NUMERICAL SIMULATION 

 

Solve the convection-diffusion equation: 

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
= 𝐷

𝜕2𝐶

𝜕𝑥2           (8) 

with the following parameters: 

Length of domain: 𝐿 = 1  m 

Final time: 𝑇 = 0.1  s 

Velocity:  𝑢 = 0.1  m/s 

Diffusion coefficient: 𝐷 = 0.01  m²/s 

Initial condition: 

𝐶(𝑥, 0) = {
1 𝑖𝑓 0.25 ≤ 𝑥 ≤ 0.5
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}          (9) 

Boundary conditions: 𝐶(0, 𝑡) = 𝐶(𝐿. 𝑡) = 0 
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Let’s choose: 

Number of spatial nodes: 𝑁 = 5 ⇒ ∆𝑥 =
1

4
= 0.25 

Time step: ∆𝑡 = 0.05 𝑠  s 

Grid points: 𝑥0 = 0, 𝑥1 = 0.25, 𝑥2 = 0.50, 𝑥3 = 0.75, 𝑥4 = 1.0 

Define the dimensionless parameters: 

𝛼 =
𝐷∆𝑡

∆𝑥2 =
0.01×0.05

(0.05)2 = 0.008  

𝛽 =
u∆t

4∆x
=

1×0.05

2×0.25
= 0.1  

The tridiagonal system at interior nodes (𝑗 = 1,2,3)  has the form: 

𝑎𝐶𝑗−1
𝑛+1 + 𝑏𝐶𝑗

𝑛+1 + 𝑐𝐶𝑗+1
𝑛+1 = 𝑑𝑗          (10) 

Where: 

𝑎 = −𝛼 − 𝛽 = −0.108  

𝑏 = 1 + 2𝛼 = 1.016  

 𝑐 = −𝛼 + 𝛽 = 0.092  

Then  

𝑑𝑗 = 𝛼𝐶𝑗−1
𝑛 + (1 − 2𝛼)𝐶𝑗

𝑛 + 𝛼𝐶𝑗+1
𝑛 − 𝛽(𝐶𝑗+1

𝑛 − 𝐶𝑗−1
𝑛 )       (11) 

   

Table 1: Initial Conditions 

Node 𝑥 𝐶(𝑥, 0) 

0 0 0 

1 0.25 1 

2 0.5 1 

3 0.75 0 

4 1 0 

 

For 𝑗 = 1 

𝑑1 = 𝛼𝐶0
𝑛 + (1 − 2𝛼)𝐶1

𝑛 + 𝛼𝐶2
𝑛 − 𝛽(𝐶2

𝑛 − 𝐶0
𝑛) = 0.892  

For 𝑗 = 2:  

𝑑2 = 𝛼𝐶1
𝑛 + (1 − 2𝛼)𝐶2

𝑛 + 𝛼𝐶3
𝑛 − 𝛽(𝐶3

𝑛 − 𝐶1
𝑛) = 1.092  

For 𝑗 = 3: 

𝑑3 = 𝛼𝐶2
𝑛 + (1 − 2𝛼)𝐶3

𝑛 + 𝛼𝐶4
𝑛 − 𝛽(𝐶4

𝑛 − 𝐶2
𝑛) = 0.108  

Solve: 𝐴𝐶 𝑛+1 = 𝑑 

Where matrix 𝐴 for 3 internal nodes: 

𝐴 = [
1.016 0.092 0

−0.108 1.016 0.092
0 −0.108 1.016

] , 𝑑 = [
0.892
1.092
0.108

]  

After solving, we get: 

𝐶𝑛+1 = [

𝐶1
1

𝐶2
1

𝐶3
1

] ≈ [
0.904
0.974
0.091

]  
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Table 2:New concentration profile 

Node 𝑥 𝐶(𝑥, 0.05) 

0 0 0 

1 0.25 0.904 

2 0.5 0.974 

3 0.75 0.091 

4 1 0 

 

By repeating this process, you can simulate until desired final time   𝑇 = 0.1 or longer. 

 

V. RESULTS AND DISCUSSION 

 

 

 
 

 
 

The graph (1) shown is a 3D surface plot representing the temporal and spatial evolution of pollutant concentration 𝐶(𝑥, 𝑡) 

in an open channel, as a solution to the one-dimensional convection-diffusion equation. The horizontal axes denote time 
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𝑡 (from 0 to 0.1 seconds) and space 𝑥 (from 0 to 1 meter along the channel), while the vertical axis shows the pollutant 

concentration. Initially, the pollutant is concentrated near the center of the channel and over time it spreads downstream 

due to the combined effects of convection (advection with flow) and diffusion. The surface illustrates how the 

concentration decreases and becomes more dispersed as time progresses, while always remaining non-negative. The 

smooth contour layers and gradual color transitions, with blue indicating low and red indicating high concentration, 

highlight a physically realistic and numerically stable solution, likely obtained using an upwind-based finite difference 

method with appropriate smoothing or interpolation techniques. 

 

The graph (2) depicts the evolution of pollutant concentration 𝐶(𝑥)  along a one-dimensional channel over four discrete 

time steps: = 0 𝑠, 0.03 𝑠, 0.07𝑠 𝑎𝑛𝑑 0.10𝑠 . The horizontal axis represents the spatial coordinate 𝑥 (from 0 to 1), and the 

vertical axis shows the corresponding pollutant concentration. At 𝑡 = 0.0 𝑠, the pollutant starts as a sharply peaked profile 

centered around 𝑥 = 0.5, indicating a localized initial release. As time progresses, the peak flattens and the concentration 

spreads in both directions, demonstrating the effects of diffusion and convection. The gradual decrease in the peak and 

increase in the spread illustrate how the pollutant becomes more diluted and dispersed with time. The smooth transitions 

in the curves and the use of different line styles for each time step provide a clear visual representation of the pollutant’s 

transport dynamics through the channel. 

 

VI. CONCLUDING REMARKS 

 

 

This study successfully implements the Crank–Nicolson scheme to numerically simulate the convection-diffusion process 

governing pollutant transport in a one-dimensional open channel. The approach provides accurate and stable solutions, 

as evidenced by the smooth concentration profiles and physically consistent results observed across time steps. The finite 

difference method, particularly when paired with the Thomas algorithm for tridiagonal systems, proves to be a robust 

tool for modeling environmental transport processes. Key findings indicate that pollutants initially introduced at a central 

location gradually spread downstream, with decreasing concentration due to diffusion and advection effects. The 

numerical results closely reflect realistic environmental behavior, making the model a valuable framework for water 

quality assessment. However, this study is limited to one-dimensional, steady, and conservative transport in a uniform 

channel. Future extensions could include multi-dimensional models (2D/3D), spatially varying flow conditions, reactive 

pollutants, and stochastic variations. Incorporating such complexities would further enhance the model's applicability to 

real-world environmental systems. 

 

REFERENCES 

 

[1]. Alfonsi G. (2009): “Reynolds-averaged Navier–Stokes equations for turbulence modeling”, Applied Mechanics 

Reviews, 62(4):040802. 

[2]. Altunba¸s A., Kelbaliyev G., Ceylan K. (2002): “Eddy diffusivity of particles in turbulent flow in rough channels”, 

Journal of Aerosol Science, 33(7):1075–1086. 

[3]. Appadu A.R. (2013): “Numerical solution of the 1D advection-diffusion equation using standard and nonstandard 

finite difference schemes”, Journal of Applied Mathematics, 2013:1–10. 

[4]. Bedrossian J., Blumenthal A., Punshon-Smith S. (2019): “Almost-sure enhanced dissipation and uniform-in-

diffusivity exponential mixing for advection-diffusion by stochastic Navier–Stokes”, Probability Theory and Related 

Fields, 179(3):977–1065. 

[5]. Kafle J., Adhikari K.P., Poudel E.P. (2024a): “Air pollutant dispersion using advection-diffusion equation”, Nepal 

Journal of Environmental Science, 12(1):1–6. 

Table 3: Pollutant Concentration 𝐶(𝑥, 𝑡) at Selected Spatial Locations and Time Steps 

x C(x, t = 0.00 s) C(x, t = 0.03 s) C(x, t = 0.07 s) C(x, t = 0.10 s) 

0 1.93×10⁻²² 2.49×10⁻¹⁶ 1.63×10⁻¹¹ 3.10×10⁻⁹ 

0.1 1.28×10⁻¹⁶ 3.14×10⁻¹² 2.40×10⁻⁸ 1.09×10⁻⁶ 

0.3 1.74×10⁻⁷ 6.93×10⁻⁶ 3.87×10⁻⁴ 2.70×10⁻³ 

0.5 1 0.82 0.58 0.42 

0.7 1.74×10⁻⁷ 6.93×10⁻⁶ 3.87×10⁻⁴ 2.70×10⁻³ 

0.9 1.28×10⁻¹⁶ 3.14×10⁻¹² 2.40×10⁻⁸ 1.09×10⁻⁶ 

1 1.93×10⁻²² 2.49×10⁻¹⁶ 1.63×10⁻¹¹ 3.10×10⁻⁹ 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 7, July 2025 

DOI:  10.17148/IARJSET.2025.12708 

© IARJSET                     This work is licensed under a Creative Commons Attribution 4.0 International License                    48 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

[6]. Kafle J., Adhikari K.P., Poudel E.P., Pant R.R. (2024b): “Mathematical modeling of pollutants dispersion in the 

atmosphere”, Journal of Nepal Mathematical Society, 7(1):61–70. 

[7]. Pariyar S., Lamichhane B.P., Kafle J. (2025): “A time fractional advection-diffusion approach to air pollution: 

Modeling and analyzing pollutant dispersion dynamics”, Partial Differential Equations in Applied Mathematics, 

14:101149. 

[8]. Poudel E.P., Acharya P., Kafle J., Khadka S. (2023): “On one dimensional advection–diffusion equation with 

variable diffusivity”, arXiv preprint, arXiv:2312.06493. 

[9]. Sutton O.G. (1932): “A theory of eddy diffusion in the atmosphere”, Proceedings of the Royal Society of London. 

Series A, Containing Papers of a Mathematical and Physical Character, 135(826):143–165. 

[10]. Taylor G.I. (1922): “Diffusion by continuous movements”, Proceedings of the London Mathematical Society, 

2(1):196–212. 

 

 

 

 

 

 

 

 

 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/

