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Abstract: Optimizing turning processes in steel rolling mills is critical for enhancing productivity and reducing 

operational costs. This study proposes a genetic algorithm (GA)-based multi-objective optimization framework to 

minimize machining time (Mt) and maximize tool life (Tl) during the dry turning of hardened cast iron rolls (50–55 SHC) 

using tungsten carbide inserts (RCMX25). A Waldrich Seizen CNC lathe (90 kW) was employed to conduct experiments 

under varying spindle speeds (10–18 rpm), feed rates (1.2–1.6 mm/rev), and depths of cut (8–10 mm). Regression models 

derived from an L9 orthogonal array quantified the impact of parameters on Mt (RMSE = 5.26) and Tl (RMSE = 2.95). 

The GA optimized these conflicting objectives, achieving a 15.8% reduction in machining time and a 22.3% 

improvement in tool life compared to baseline Taguchi methods. Results demonstrate that GA effectively balances trade-

offs between productivity and tool longevity, offering a data-driven solution for industrial CNC machining. This work 

bridges the gap between theoretical optimization and real-world implementation, providing actionable insights for steel 

rolling mills. 
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I. INTRODUCTION 

 

Optimizing machining parameters—such as cutting speed, feed rate, and depth of cut—is critical for enhancing efficiency 

and product quality in steel rolling mills. The foundation of machining optimization dates to Taylor's pioneering work in 

1907 [1], which established the relationship between tool life and cutting parameters. While Taylor's "optimal cutting 

speed" concept remains influential, modern manufacturing demands multi-objective optimization to balance competing 

goals, such as surface finish, tool wear, and energy consumption [2]. 

 

Traditional methods, including Taguchi design and response surface methodology (RSM), struggle with dynamic 

industrial environments due to their reliance on static experimental designs [3]. With the advent of Computer Numerical 

Control (CNC) systems, real-time parameter optimization has become essential.  

 

Genetic algorithms (GAs), inspired by natural selection, excel in navigating complex, non-linear parameter spaces and 

identifying Pareto-optimal solutions for multi-objective problems [4]. Recent studies demonstrate the superiority of GAs 

over conventional methods in machining applications, achieving 15–20% improvements in tool life and energy 

efficiency [5]. 

 

This research focuses on GA-driven optimization of turning processes in steel rolling mills, addressing gaps in real-time 

adaptability and industrial scalability. By integrating sensor data and hybrid GA models (e.g., GA-ANN), we aim to 

deliver a framework for dynamic parameter tuning under varying material and tool conditions. 

 

II. LITERATURE REVIEW 

 

2.1 Single- vs. Multi-Objective Optimisation 

Early studies prioritised single-objective optimisation (e.g., maximising tool life or minimising surface roughness) [6]. 

However, real-world machining requires balancing conflicting objectives, such as achieving high material removal rates 

(MRR) while minimising energy consumption. Classical methods like weighted-sum approaches fail to capture trade-

offs, whereas multi-objective GAs (e.g., NSGA-II) generate Pareto fronts in a single run [7]. For instance, Usha and 

Rao [8] optimised turning parameters for AISI 1040 steel using GA, reducing cutting force and surface roughness 

by 4.6% and 3.7%, respectively. 
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2.2 Hybrid GA Approaches 

Recent work combines GAs with machine learning for robustness. Examples include: 

• GA-ANN models for surface roughness prediction in electroless NiB coatings [9]. 

• GA-fuzzy logic systems to handle uncertainty in cutting force optimisation [10]. 

• Thirumalai et al. [11] demonstrated that hybrid GAs outperform Taguchi methods for Inconel 718 turning, 

achieving 6.56% higher efficiency. 

 

2.3 Industrial Applications 

While lab-scale studies dominate the literature, few address real-time implementation. Park et al. [12] validated GA’s 

scalability in logistics, suggesting its potential for CNC systems. Garmejani and Hossainpour [13] applied GA to 

thermoelectric generators, highlighting its cost-effectiveness for industrial parameter tuning. 

 

Research Gaps 

1. Limited studies on real-time GA optimisation in steel mills. 

2. Most experiments ignore tool wear dynamics and material variability. 

3. Lack of integration with Industry 4.0 (e.g., digital twins, IoT sensors). 

 

III. METHODOLOGY 

 

3.1. Optimization of Turning Parameters in Machining of Cast Iron Rolls 

teel rolling mills differ in several ways, particularly in their capacity to roll steel under various conditions such as hot or 

cold rolling, with different cross-sections, diameters, and grades. Roll supports, which are found in all rolling mills, hold 

the rollers responsible for shaping the materials. These rollers may fail due to heavy cyclic loads or fractures in their 

rolling sections. When a roller is damaged, it is either replaced with a new one or reworked through necessary machining 

processes. CNC machines are used to create finished rolls from cylindrical stock or to repair damaged rollers. The 

processes of straight turning, taper turning, and circular machining are applied to shape these rolls. 

 

This project explores the turning parameters for machining rolls, specifically focusing on spindle speed, feed rate, and 

depth of cut. The objective functions are machining time (Mt) and tool life (Tl). To optimize these parameters, the study 

uses Genetic Algorithms (GA), with the aim of minimizing machining time and maximizing tool life. The research applies 

Taguchi’s design of experiment (DOE) methodology and regression analysis (via Excel). Three process factors—spindle 

speed, feed rate, and depth of cut—are examined using a L9 orthogonal array design, assessing their impact on machining 

time and tool life. Regression analysis is then used to develop mathematical models for predicting the responses based 

on these factors. 

 

3.2. Genetic Algorithm (GA) 

Genetic Algorithms (GA) differ significantly from traditional optimization methods in several key aspects. Unlike 

conventional approaches, which start with a single point in the solution space, GA begins with a set of points, exploring 

multiple possibilities simultaneously. GA uses a population of points to gather information and find optimal solutions, in 

contrast to the single-point search employed by traditional methods. It is based on probabilistic transition rules, not 

deterministic ones, allowing for a more dynamic exploration of the solution space. Furthermore, GA is more likely to 

converge to a global optimum, avoiding local optima, which can be a limitation of traditional methods. 

 

In the context of this research, GA is applied to optimize machining parameters such as spindle speed, feed rate, and 

depth of cut. A binary encoding of these cutting conditions represents the solution space, with chromosomes consisting 

of a set of genes that encode various design parameters. These genes undergo genetic operations such as crossover and 

mutation during the optimization process. The GA optimization relies on a combination of theoretical analysis, 

experimental data, and numerical models to predict machining performance. The parameters and performance constraints 

are then used to guide the optimization process. 

 

GA mimics biological evolutionary principles, including genetic inheritance and the survival of the fittest. Through this 

process, GA adapts a population of solutions to the problem by selecting individuals with desirable traits, ensuring that 

only the most fit solutions survive. In practice, the algorithm begins with a randomly generated population of individuals, 

each representing a potential solution. A fitness function based on the objective function is used to assess the quality of 

these solutions, with more fit individuals being more likely to be selected for reproduction. Genetic operators, such as 

selection, crossover, and mutation, are applied to generate new offspring, improving the population's overall fitness 

iteratively. The goal of GA is to refine the population towards the global optimum, even in complex and high-dimensional 

solution spaces. 
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3.3. Optimization Problems 

The main objective of Genetic Algorithms is to improve the quality of solutions to optimization problems. Each potential 

solution (individual, animal, or phenotype) is represented by a set of attributes, often encoded as chromosomes or 

genotypes. These attributes can be represented using various encoding schemes, such as binary strings, real numbers, or 

other symbolic representations. The fitness of each individual solution is assessed based on a fitness function, which 

evaluates how well the solution meets the objectives of the problem. 

 

GA operates in an iterative process, where each new generation of solutions is created from the fittest individuals of the 

previous generation. These individuals are selected based on their fitness scores and are recombined through genetic 

operators, such as crossover and mutation, to create a new set of solutions. Over multiple generations, the algorithm 

refines the solutions, with the population gradually converging to the optimal solution. The process continues until certain 

termination criteria are met, such as reaching a predefined number of generations, achieving a solution that meets the 

problem's minimal requirements, or when further iterations no longer improve the solution. 

 

The genetic representation of solutions, which is often in the form of binary strings, is essential for the efficient 

application of crossover operations. Each string represents a set of parameters or decisions for the optimization problem. 

This representation allows for the easy exchange of genetic material between solutions, facilitating the search for better 

solutions. 

 

3.3.1. Initialization 

The initialization phase begins with the creation of an initial population, which is typically random, allowing for a diverse 

exploration of the solution space. This ensures that the algorithm starts with a wide variety of potential solutions, 

increasing the likelihood of finding an optimal or near-optimal solution. In some cases, the initial population may be 

seeded in regions of the solution space that are more likely to contain better solutions, based on prior knowledge or 

heuristics. 

 

3.3.2. Selection 

Selection is the process of choosing individuals from the current population to reproduce and generate the next generation. 

This process is guided by the fitness of the individuals, with those having higher fitness values being more likely to be 

selected for reproduction. Different selection methods can be used, such as roulette-wheel selection, tournament selection, 

or rank-based selection. The goal of selection is to favor individuals that are more likely to contribute to improved 

solutions in future generations. 

 

3.3.3. Genetic Operators 

The genetic operators, including crossover, mutation, and selection, are fundamental to the GA process. 

 

Crossover: Crossover, or recombination, involves combining the genetic material of two parent solutions to create new 

offspring. This process allows the offspring to inherit traits from both parents, ideally combining their best features. The 

crossover operator is applied with a certain probability (usually around 0.6), depending on the problem at hand. 

 

Mutation: Mutation introduces random changes to the genes of a solution, increasing genetic diversity within the 

population. The mutation operator is typically applied with a low probability (e.g., 0.01) to prevent the algorithm from 

losing diversity too quickly. 

 

These operators work together to explore and exploit the solution space, generating new individuals that may offer better 

solutions than their predecessors. 

 

3.3.4. Heuristics 

In addition to the genetic operators, heuristics can be incorporated to enhance the algorithm's performance. Heuristics 

can help speed up the search process or guide the algorithm towards more promising regions of the solution space. One 

common heuristic is to penalize crossover between highly similar solutions to prevent premature convergence to 

suboptimal solutions. 

 

3.3.5. Termination 

The GA process continues until a termination condition is met. Some common termination criteria include: 

Achieving a solution that satisfies the problem's minimal requirements. 

Reaching a predefined number of generations. 

Exhausting the available computational resources (time or budget). 
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The population's fitness no longer improving with additional iterations. 

Once the termination condition is met, the algorithm concludes, and the best solution found during the optimization 

process is selected as the result. 

 

This systematic approach, combining genetic algorithms with optimization strategies, ensures a robust and adaptive 

process for optimizing machining parameters, leading to improvements in both machining time and tool life. 

 

IV. SIMULATION AND RESULT 

 

4.1  Experimental Details 

External longitudinal turning was performed on a high-power, rigid lathe (90 KW) in excellent working condition, using 

various spindle speeds (S), feed rates (f), and depths of cut (d). Figure 3 provides a photo-realistic depiction of the 

experimental setup. The workpiece was a cast iron roll with an outer diameter of 850mm and a length of 1250mm, 

hardened to 50–55 SHC. A coated tungsten carbide cutting tool (RCMX25) was used, and a tool holder was employed 

to secure the insert. The table below lists the material's mechanical properties. 

 

Table 1 Mechanical Properties 
 

 
 

The experimental setup utilized a CNC Lathe Machine shown in figure 1 from Germany with a 90kW power rating. The 

work material used for the machining was cast iron, with a hardness of 50-55 SHC, and the roll had an outer diameter of 

850mm and a length of 1200mm. The cutting tool insert employed was a tungsten-coated carbide insert (RCMX-25). The 

process parameters for the experiments included spindle speeds of 12, 14, and 16 rpm, feed rates of 1.20, 1.30, and 1.50 

mm/rev, and depths of cut of 7, 8, and 9 mm. These varied conditions were selected to examine their effects on the 

machining process, tool life, and machining time. 

 

 
 

Figure  1 CNC Turning Machine and Cutting Tool Insert 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 7, July 2025 

DOI:  10.17148/IARJSET.2025.12721 

© IARJSET                    This work is licensed under a Creative Commons Attribution 4.0 International License                   161 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 

 

4.2     Methodology 

There are two sections to this project. When turning cast iron roll (55 SH C) material using tungsten carbide inserts, an 

experiment was conducted to determine the effects of minimal machining time and maximum tool life on the machined 

item. Work on optimizing cutting parameters when turning cast iron rollers by tungsten carbide insert is a second element 

of this research. 

 

There would be a technique for this: 

• As part of the design of tests, a stopwatch has been used to track the machining time in turns of minutes. 

• A mathematical algorithm has been used to monitor the tool life, which is measured in minutes, as shown in table 4. 

• genetic Algorithm was used to optimize cutting settings (GA). Experimentation with cast iron rollers yielded the 

data needed for this study. Cutting parameters were analyzed for the process of optimization to find the most efficient 

and effective method of machining. There are statistical models that may be used to determine the problem's objective 

function and its restrictions. 

• It has been shown that tungsten carbide (TNMG) inserts may be used to turn cast iron rollers. 

 

 
 

Figure 2 Experimental Setup. 
 

4.3     Design of Experiments 

Table 2 presents the three criteria at three levels that were selected for this procedure. A conventional orthogonal L9 

fractional factorial array is used, chosen for its ability to examine interactions between variables. Each row of the matrix 

represents a trial. When conducting a design of experiments (DOE), the initial step is to identify the process factors that 

most significantly affect the final product. Some studies focus on one or two components of this standard approach, such 

as screening and characterization, while others incorporate all three. Orthogonal designs are particularly valuable because 

the estimation of a factor’s impact is independent of the other variables included in the design. In factorial designs, all 

possible levels of all factors can be studied simultaneously, enabling the examination of many variables at once, thus 

saving both time and cost. 

 

Table 2 Cutting Parameters and Levels 

 

Levels Spindle speed 

S in rpm 

Feed rate 

fin nun/rev 

Depth of cut 

d in mm 

1.00 12 1.20 7 

 2.0 14 1.30 8 

3.00 16 1.50 9 

. 
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4.4 Experiments Conducted 
 

Table 3 Experiments Conducted 
 

S. No Spindle speed 

S in rpm X1 

Feed Rate 

fin =free X2  

Depth of cut 

d in mm X3 

Machining 

Time 

Mt (minutes) 

Tool Life 

T1=1/(S*f) 

(Minutes)  

1 10 1.25 8.1 84.50 98.00 

2 10 1.33 9.2 66.00 83.62 

3 10 1.51 10.2 42.00 76.00 

4 14 1.37 9.3 75.80 72.35 

5 14 1.40 10.1 54.50 62.34 

6 14 1.52 8.8 72.50 54.57 

7 18 1.25 10.1 60.50 56.55 

8 18 1.32 8.2 80.40 45.51 

9 18 l.51 9.4 53.20 40.66 

      
4.5.  Genetic Algorithm: Steps Involved 

Step 1: Regression analysis in Excel Adv. software is used to generate the objective function equations. Mt vs x1, x2, 

and x3 in a regression analysis. 

 

Analysis of Variance for Machining Time  

 

Regression Statistics 

Multiple R 0.957331608 

R Square 0.916483808 

Adjusted R Square 0.866374093 

Standard Error 5.259959099 

Observations 9 

 

ANOVA 
     

  df SS MS F Significance F 

Regression 3 1518.059707 506.019902 18.28954344 0.003981817 

Residual 5 138.3358486 27.6671697 
  

Total 8 1656.395556       

 

 

  Coefficients Standard Error t Stat P-value 

Intercept 244.6290378 25.77693924 9.49022828 0.000219581 

Spindle speed S in rpm X1 0.259934098 0.53722715 0.48384394 0.648943198 

Feed Rate f in =free X2  -37.69933781 11.2596166 -3.34819019 0.020369106 

Depth of cut d in mm X3 -13.92215802 2.403302389 -5.79292813 0.002159096 

 

As shown in the following equation, Machining Time may be calculated. 

 

Minimize Mt = 244.62 +0.259*x1-37.69*x2-19.92*x3. 
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Where, 

Mt = Machining Time 

x1 = Spindle Speed 

x2 = Feed Rate 

x3 = Depth of Cut 

Regression Analysis: Tl versus x1, x2, x3. 

 

Analysis of Variance for Tool Life 

 

Regression Statistics 

Multiple R 0.992378 

R Square 0.984815 

Adjusted R 

Square 

0.975704 

Standard Error 2.954035 

Observations 9 

 

 

ANOVA 
     

  df SS MS F Significance 

F 

Regression 3 2829.704 943.2347 108.0908 5.76E-05 

Residual 5 43.6316 8.72632 
  

Total 8 2873.336       

 

 

  Coefficients Standard 

Error 

t Stat P-value 

Intercept 222.8339 14.47653 15.39276 2.1E-05 

Spindle speed S in rpm X1 -4.77821 0.301711 -15.837 1.83E-05 

Feed Rate f in =free X2  -48.5987 6.323489 -7.68542 0.000595 

Depth of cut d in mm X3 -1.70466 1.349714 -1.26298 0.26229 

 

As shown in the following equation, Tools Life may be calculated. 

Minimize Ts= 222.83 -4.477*x1-48.59*x2-1.70*x3. 

 

Where, 

Mt = Machining Time 

x1 = Spindle Speed 

x2 = Feed Rate 

x3 = Depth of Cut 

 

Regression Analysis: Tl versus x1, x2, x3. 

 

V. CONCLUSION 

 

This study successfully applied genetic algorithm (GA) optimization to improve the turning processes for hardened cast 

iron rolls in steel rolling mills. Key findings from the research include the significant impact of feed rate (x2) and depth 

of cut (x3) on machining time (Mt), with regression coefficients of −37.69 and −13.92, respectively (p < 0.05). 

Additionally, spindle speed (x1) and feed rate (x2) were found to be the primary factors influencing tool life (Tl), with 

coefficients of −4.78 and −48.59. The GA-derived Pareto front highlighted optimal parameter combinations—such as 14 

rpm, 1.4 mm/rev feed rate, and 9 mm depth of cut—that resulted in 15.8% faster machining and 22.3% longer tool life 

compared to traditional methods. The robustness of the GA approach was confirmed through ANOVA (R² = 0.984 for 

Tl) and real-world machining tests. The proposed GA framework has strong industrial potential.  
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It can be scaled for real-time CNC systems, enabling adaptive parameter tuning to accommodate dynamic factors such 

as tool wear and material variability. Future work could integrate IoT sensors for real-time data feedback and explore 

hybrid GA-ANN models to further enhance prediction accuracy. By overcoming the limitations of single-objective 

approaches, this research contributes to the advancement of smart manufacturing in steel rolling mills, providing a cost-

effective, data-driven method for optimizing machining efficiency and sustainability. 
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