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Abstract: The growing demand for energy-efficient and high-performance arithmetic units in digital systems has 

intensified research into low-power design techniques. Adders, being fundamental components in digital signal 

processing, multimedia, and machine learning applications, play a crucial role in overall system performance. This project 

presents a hybrid power and area efficient parallel prefix adder (PPA) design that utilizes approximate computing to 

reduce power and area consumption, while maintaining acceptable accuracy levels for error-tolerant applications. The 

proposed architecture divides the adder into two distinct sections: the Least Significant Part (LSP), which employs 

approximate logic to reduce complexity and resource usage, and the Most Significant Part (MSP), which retains exact 

computation to ensure result fidelity where it is most critical. A combination of Kogge-Stone and radix-4 adder structures 

is used to balance speed, architectural simplicity, and energy savings. The design introduces approximate prefix operators 

(AxPOs) that eliminate or simplify certain logic gates in the carry propagation paths, significantly optimizing power and 

delay. Four approximate PPA variants—AxPPA-BK (Brent-Kung), AxPPA-KS (Kogge-Stone), AxPPA-LF (Ladner-

Fischer), and AxPPA-SK (Sklansky)—are developed and evaluated against the proposed hybrid adder. The 

implementation is carried out in Verilog HDL, simulated using ModelSim, and synthesized using Xilinx ISE. 

Comparative analysis shows that the hybrid adder achieves notable reductions in power, area, and delay compared to 

traditional PPAs and other approximate designs, making it a compelling solution for power-constrained systems in 

approximate computing domains. 

 

Keywords: Approximate Adder, Kogge-Stone Adder, Ladner-Fischer Adder, Parallel Prefix Adder (PPA), Brent-Kung 

Adder, Sklansky Adder. 

 

I.       INTRODUCTION 

 

In the modern era of digital electronics, the demand for high-speed, energy-efficient, and area-optimized arithmetic 

circuits has surged dramatically. Among these, the adder is one of the most fundamental components used in a variety of 

computational tasks. From arithmetic logic units (ALUs) and digital signal processors (DSPs) to multimedia systems and 

machine learning accelerators, adders are ubiquitous and play a vital role in determining the overall performance and 

efficiency of digital systems. As the complexity and scale of data-centric applications continue to grow, there is a pressing 

need for novel adder architectures that can meet stringent power and area constraints while maintaining acceptable 

accuracy and performance. One class of adders that has received considerable attention due to their high-speed 

capabilities is the PPA. PPAs such as Kogge-Stone, Brent-Kung, Sklansky, and Ladner-Fischer provide logarithmic time 

delay by computing the carry bits in parallel using a network of generate and propagate signals. These structures are well 

suited for high-performance applications where speed is a critical metric. However, the major drawback of PPAs is their 

increased area and power consumption due to the large number of prefix operators and interconnections involved in the 

carry generation process. 

 

Simultaneously, a new design paradigm known as Approximate Computing (AxC) has emerged as a promising solution 

to the challenges posed by power and area constraints. Approximate computing leverages the fact that many modern 

applications—particularly those in the domains of image processing, audio/video streaming, machine learning, and sensor 

data analysis—do not always require perfectly accurate computations. These applications are inherently error-tolerant, 

meaning that small inaccuracies in the computation do not significantly impact the perceived quality of the output. By 

deliberately introducing controlled imprecision into the hardware, approximate computing allows for substantial savings 

in power, delay, and silicon area. The fusion of these two domains—parallel prefix adders and approximate computing—
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forms the basis of this project. In this work, a Hybrid Approximate Parallel Prefix Adder architecture is proposed that 

intelligently partitions the adder into two regions: an approximate Least Significant Part (LSP) and an accurate Most 

Significant Part (MSP). This hybridization allows for aggressive approximation in the LSP, where inaccuracies are less 

impactful, while preserving accuracy in the MSP to ensure that the final computation remains within acceptable bounds. 

The proposed architecture combines the strengths of Kogge-Stone and radix-4 adder topologies to optimize the trade-off 

between power, delay, and accuracy. 

 

II.       RELATED WORKS 

 

Padmanabhan Balasubramanian and Douglas L. Maskell (December 2024) introduced a novel fast bipartitioned hybrid 

adder (FBHA) that combines carry-select and carry-lookahead logic. In this design, the less significant part is 

implemented using carry-lookahead logic, while the significant part employs carry-select logic. The 32-bit FBHA 

demonstrated significant improvements over traditional adders, including a 19.8% reduction in delay compared to a carry-

lookahead adder and a 46.5% reduction in area compared to the Kogge-Stone adder.  

 

Hafsa and Aksa David (May 2022) explored the design of an area-efficient Wallace Tree multiplier incorporating 

approximate 4:2 compressors and Kogge-Stone adders. The study demonstrated that integrating approximate components 

in the multiplier's final addition stage could reduce area and improve speed without significantly compromising accuracy.  

Asma Iqbal et al. (December 2023) presented a performance-efficient and fault-tolerant approximate adder design. The 

proposed adder incorporated fault-tolerant techniques to enhance reliability while maintaining the benefits of 

approximate computing, making it suitable for applications where both efficiency and fault tolerance are critical. 

 

R. Jothin et al. (June 2023) conducted a comprehensive comparison of high-performance adders, including Brent-Kung, 

Kogge-Stone, Ladner-Fischer, and Sklansky architectures, in the context of hybrid and error-tolerant applications. The 

study provided insights into the trade-offs between different adder designs concerning area, delay, and power 

consumption, aiding in the selection of appropriate architectures for specific application requirements.  

 

Anum Khan and Subodh Wairya (2024) proposed a sparse Kogge-Stone adder architecture that integrates a hybrid carry 

prefix generator to enhance power efficiency and reduce area. This design is particularly beneficial for applications 

requiring intensive floating-point computations, offering improvements in both speed and power consumption over 

traditional Kogge-Stone adders. 

 

Sandeep N. Uttarkar and K. B. Ramesh (2024) presented a high-frequency 16-bit full adder architecture optimized for 

low latency. Implemented using Verilog HDL and synthesized on Xilinx FPGA platforms, the design leverages 

techniques like carry-select and carry-lookahead to achieve enhanced performance, making it suitable for high-speed 

computing applications. 

 

Hema Singaravelan and Dr. Kiran V (2024) investigated the realisation of a 32-bit Kogge-Stone hybrid adder utilising 

conventional cells from multiple logic families, including CMOS, Pseudo NMOS, and Modified Gate Diffusion Input 

(MGDI).  Their results demonstrate that Pseudo NMOS logic realises a 14.03% reduction in area, but MGDI provides a 

54.43% decrease in power consumption relative to conventional CMOS technology, underscoring the promise of 

alternative logic architectures in adder design. 

 

III.      SYSTEM METHODOLOGY 

 

The design and development of a hybrid power and area efficient parallel prefix adder based on approximate computing 

follow a systematic methodology that integrates architectural innovation, hardware design, and performance 

optimization. The aim is to achieve a highly optimized arithmetic unit that meets the requirements of low power 

consumption and minimal area usage while maintaining acceptable computational accuracy. This methodology is divided 

into distinct phases starting from problem formulation to simulation, synthesis, and final analysis. 

 

3.1 Parallel Prefix Adder 

In Parallel Prefix wind case, twofold development routinely imparts in articulations of bring advancement sign, pass on 

spread sign, pass on sign, and the aggregate sign, at each piece position (1 ≤ I ≤ n) [6], by far most of these alerts can be 

obtained through regard to the condition underneath 

A parallel prefix circuit computes N outputs YN , ...., Y1 from N inputs XN , ...., X1 using an arbitrary associative 

operator •, defined 
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In majority of the prefix computations, the intermediate signals ZN:N , ...., Z1:1 are pre-computed. The prefix signals 

YN:1, ...., Y1:1 are produced from prefix networks by combining these intermediate signals. Final outputs are post-

computed from the inputs and the prefixes. Parallel-prefix adders (PPA) use parallel-prefix scheme in order to realize 

fast computation of carry. Different parallel-prefix algorithms result in diverse adders characterizing diverse 

performances. However, in every architecture of PPA, the initial stage (computation of bit-level generate and propagate 

signals) and the final stage (computation of sum bits) remain the same. They differ only in the intermediate stage 

(arrangement of the intermediate carry computation levels). The performance of a parallel prefix adder is decided through 

many design choices such as recurrence equations used to implement the carry tree, valency of the carry graph, tree 

sparseness, carry tree topology, logic family, and so on. The choice of each of these factors greatly impacts the overall 

performance of the adder. The parallel prefix algorithm based adder accepts the inputs AN , ...., A1, BN , ...., B1 and Cin 

and produces the sum output SN , ...., S1 using the Generate (G) and Propagate (P) prefix signals. 

The parallel prefix addition based on Weinberger’s recurrence equations (Weinberger 1958) is executed in three stages 

as shown below. 

i) Pre-computation: Computation of bit-level generate (gi) and propagate (pi) or (xi) is performed according to the 

following equations 

 

 
 

ii) Prefix processing: The prefix operator • is defined for producing group level generate and propagate signals, as given 

below 

 

 
 

iii) Post-computation: Generation of sum bits is done according to 

 
The block diagram of the afore stated PPA using Weinberger’s recurrence equations is illustrated 

 

 
Figure 1 Block Diagram of Parallel Prefix Adder 

 

In the prefix tree of PPAs, outputs at any significant position depends on all inputs of equal or lower significant bits. 

Further, each of the input bits influence all the outputs of equal or higher significance. As the operator • is associative, 

the individual operations can be carried out in any order. The input bits (xi, xi−1, ., xk) are grouped to produce the 

intermediate group variable Yi:k. At subsequent levels of carry tree, sequences of group variables can be combined using 

the associative operator, thus resulting in m levels of intermediate group variables Y l i:k . The group variable Y l i:k 

denotes the prefix result of the input bits (xi , xi−1, ., xk) at level l. The prefix variables at the last level m ought to cover 

all the inputs from the respective bit index to the bit index 0. The group variables in a prefix carry tree can therefore be 

represented as given below.  
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In the above equations, the variable Y l i:k represent the group generate and group propagate signals, which depict the 

generation and propagation of carry signals. There exist many algorithms to produce the carries required for addition on 

the basis of the bit grouping properties as shown in above equation. As the binary addition operation using prefix operator 

describes a combinational input to output relationship, they can be realized using logic networks. The group variables 

produced at the level l are Y l i:k = Gl i:k , Pl i:k . The generate signals Gm i:0 obtained from the mth stage, represent 

the carry signals ci , which are then employed in the post-processing stage to compute the final sum bits Si. 

  

There are many ways by which the prefix processing can be done. Based on the arrangement of the prefix nodes, 

numerous parallel prefix structures have evolved. Each of the classical prefix structures present different trade-offs in 

terms of the number of logic stages in the carry tree, lateral fan-out and number of horizontal wiring tracks. Some of the 

most commonly used prefix structures based on Weinberger’s recursion are discussed in the following sub-section. 

 

3.2 Hybrid Approximate Parallel Prefix Adders (HAxPPAs) 

The proposed methodology focuses on the design and evaluation of Hybrid Approximate Parallel Prefix Adders 

(HAxPPAs) to achieve enhanced performance, power efficiency, and energy optimization in arithmetic circuits.  

The hybrid adder is strategically partitioned into three operational zones: the Approximate Parallel Prefix Adder (AxPPA) 

block for the least significant bits (LSBs), the Radix-4 adder block for the middle bits, and the Kogge-Stone adder block 

for the most significant bits (MSBs). This modular design is intended to exploit the trade-offs between speed, accuracy, 

and silicon area, as each block contributes its specific advantages to different parts of the addition operation based on the 

sensitivity of bit positions to error and carry propagation. 

 

 
Figure 2 Proposed Block Diagram of Hybrid Adder 

 

Approximate Parallel Prefix Adder (AxPPA) Block 

The AxPPA block is employed for computing the LSBs, where approximation has a minimal effect on the overall 

accuracy of the result. This block reduces critical path delay and power consumption by simplifying the traditional prefix 

adder structure. Instead of performing full carry computation for every bit, it uses Approximate Prefix Operators (AxPOs) 

that eliminate certain logic stages. These AxPOs directly wire the generate and propagate signals to the post-processing 

step, bypassing the intermediate logic trees typical in standard adders like Brent-Kung or Han-Carlson. 

This approximation avoids unnecessary computation, which greatly enhances speed and area efficiency. Since small 

errors in LSBs do not significantly affect the final numerical value, the architecture accepts this compromise. 

Additionally, this reduction in logic not only accelerates processing but also contributes to lower dynamic power 

dissipation. 

 

Radix-4 Adder Block for Middle Bits 

The central section of the hybrid adder uses a Radix-4 adder, which strikes a balance between speed and resource 

utilization. In contrast to traditional binary adders that compute one bit at a time, a Radix-4 adder processes two bits per 

stage, effectively halving the number of carry stages required. It uses a more complex carry lookahead logic that considers 

multiple bit groupings to anticipate and compute carry bits efficiently.This block serves as a bridge between the low-
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accuracy AxPPA and the high-accuracy Kogge-Stone block. Since middle bits moderately influence the result's precision, 

the Radix-4 adder provides a trade-off—offering better accuracy than the AxPPA but faster and more compact than the 

Kogge-Stone adder. It ensures that carry propagation remains under control without significantly inflating delay or power 

overhead. 

 

Kogge-Stone Adder Block for Most Significant Bits (MSBs) 

The most significant bits of the operands are handled by the Kogge-Stone adder, a type of prefix adder known for its 

parallelism and minimum logic depth. These bits are crucial because errors here can drastically alter the output. The 

Kogge-Stone structure ensures complete accuracy and fast carries computation due to its logarithmic delay and wide fan-

out capability. 

In this block, generate and propagate signals are computed and combined across multiple stages to ensure that the carry 

information propagates as quickly and accurately as possible. Though it is area- and power-intensive compared to other 

adders, its placement at the MSB end is justified because the risk of error in these bits must be minimized. 

 

Carry Propagation and Interfacing between Blocks 

An essential aspect of this architecture is how the carry signals are passed between the blocks. The AxPPA block 

computes and passes the initial carry-out to the Radix-4 adder, which then computes the carry for its range and sends its 

carry-out to the Kogge-Stone block. This sequential carry chaining ensures continuity and correctness across the full 

adder range despite the heterogeneous nature of the blocks. 

The interface design must ensure synchronization between these blocks to prevent glitches or timing mismatches. 

Additional logic may be used to align the timing of signals entering the Radix-4 and Kogge-Stone blocks, especially 

since the AxPPA may complete computation much earlier due to its simplified logic. 

 

IV.       EXPERIMENTAL RESULTS 

 

The hybrid adder architecture in this work is implemented using Verilog HDL for hardware, simulated in ModelSim for 

functional verification, and synthesized using Xilinx tools (Vivado or ISE) for FPGA deployment. Verilog HDL serves 

as the primary language to design three interconnected adder blocks: the AxPPA block, which approximates the lower 

bits to reduce delay and logic usage; the Radix-4 adder block, which efficiently processes mid-level bits using group-

based carry computation; and the Kogge-Stone adder, which handles higher-order bits with parallel prefix logic for high-

speed addition. These modules are instantiated within a top-level hybrid module, connected via internal wires that pass 

computed carries between stages. ModelSim is used to simulate the behavior of the entire hybrid system using a testbench 

that applies various input vectors and monitors the output sum to ensure correctness across all possible input conditions. 

Finally, the design is synthesized using Xilinx tools, where it is mapped to the logic fabric of the target FPGA. During 

synthesis, the hybrid architecture demonstrates advantages in timing, area, and power by balancing approximate and 

accurate computation strategies across different bit segments, offering an optimal trade-off between speed, resource 

utilization, and computational accuracy. 

 

 
Figure 3 Simulation result of 16-bit approximate Brent-Kung adder 
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The figure 3 represents the simulation output of a 16-bit approximate Brent-Kung adder, where inputs A and B along 

with carry-in (CIN) are processed to produce the sum output (S) and carry-out (CR). In this architecture, the lower 

significant bits (LSBs) are computed approximately to reduce delay and power, while the higher significant bits (MSBs) 

are processed using the exact Brent-Kung parallel prefix logic. The Brent-Kung strategy structures the prefix computation 

in a hierarchical manner: 2-bit groups are combined to form 4-bit groups, which are further grouped to form 8-bit prefixes, 

ensuring minimal logic depth and a regular layout. This arrangement optimizes the design by reducing the fan-out and 

interconnect complexity, resulting in efficient implementation with reduced area and power consumption. 

 

 
Figure 4 Simulation result of 16-bit approximate Kogge-stone adder 

 

This figure 4 illustrates the simulation outcome of a 16-bit approximate Kogge-Stone adder. The adder takes A, B, and 

CIN as inputs and generates the corresponding sum (S) and carry-out (CR). The LSB section employs approximation for 

faster computation, while the MSB portion uses an exact Kogge-Stone prefix logic. Kogge-Stone adders are known for 

their minimal logic depth and parallel structure, offering high-speed performance. The adder tree contains multiple 

parallel propagate and generate cells, which compute carry values efficiently. However, the complexity of interconnect 

routing in a regular layout increases the circuit area. Despite this, the Kogge-Stone adder remains favorable for high-

speed arithmetic operations due to its consistent and balanced fan-out. 

 

 
Figure 5 Simulation result of 16-bit approximate Sklansky adder 
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In this figure 5 simulation, the 16-bit approximate Sklansky adder demonstrates how inputs A and B with carry-in (CIN) 

are used to compute the sum (S) and carry-out (COUT). The lower bits are approximated to reduce complexity, and the 

upper bits are processed using the exact Sklansky prefix logic. The Sklansky adder is characterized by its divide-and-

conquer approach, which significantly reduces the delay in computing intermediate prefixes. However, this comes at the 

cost of increased fan-out, which doubles at each stage of the adder, potentially causing timing issues and power 

inefficiencies in larger designs. Despite the high fan-out, Sklansky adders provide a scalable solution for fast carry 

propagation with reduced gate delay. 

 

 
Figure 6 Simulation result of 16-bit approximate Ladner-Fischer adder 

 

The simulation result figure 6 shown is for a 16-bit approximate Ladner-Fischer adder. Inputs A and B, along with CIN, 

produce the sum (S) and carry-out (COUT). The LSBs are handled using approximate logic to minimize resource usage, 

while the MSBs utilize the exact Ladner-Fischer prefix logic. This adder architecture strikes a balance between the 

regularity of Sklansky and the compactness of Brent-Kung structures. It computes prefix values for odd bits and applies 

an additional stage to integrate even bit computations. This structure enables moderate fan-out and logical depth, offering 

an efficient middle ground between complexity and performance, making it suitable for medium-performance and area-

constrained applications. 

 

 
Figure 7 Simulation result of 16-bit approximate Hybrid Adder 
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The figure 7 simulation shows the 16-bit approximate hybrid adder. This design accepts A, B, and CIN as inputs and 

outputs the sum (S) and carry-out (CR). The LSB section employs approximate logic for faster and simpler computation. 

The MSB section combines radix-4 and Kogge-Stone adder structures for high-speed operation. The MSB portion is split 

into two 4-bit blocks, where the carry output from the first block is propagated into the second block. Radix-4 logic 

provides fast partial sum generation, while Kogge-Stone ensures efficient and parallel carry computation. Although this 

hybrid approach enhances speed and reduces fan-out, it increases routing complexity and chip area slightly due to the 

intricate layout required for integration. This design is ideal for applications needing a trade-off between performance 

and area optimization. 

 

Table 1Comparative Analysis 

 

Types 
Area (Gate 

count) 
LUTs Slices Delay(ns) Power(mW) 

Brent-kung 156 26 15 16.239 204.39 

Kogge-stone 186 31 18 16.059 219.32 

Ladner-Fischer 216 36 22 16.059 231.56 

Sklansky 168 28 17 17.665 203.76 

Hybrid-KS-

RD4A 144 24 15 16.113 199.30 

 

The table 1 presents comparative analysis of different adders. The Brent-Kung adder presents a balanced design in terms 

of area, delay, and power. With a gate count of 156, 26 LUTs, and 15 slices, it maintains a compact area footprint while 

offering a moderate delay of 16.239 ns and power consumption of 204.39 mW. Its structured prefix logic with minimal 

fan-out enables an efficient layout and moderate performance, making it suitable for applications where a trade-off 

between speed and resource utilization is acceptable. The Kogge-Stone adder, known for its high-speed performance, 

achieves the lowest delay of 16.059 ns among all architectures due to its fully parallel carry propagation tree. However, 

this comes at the cost of higher area usage, requiring 186 gates, 31 LUTs, and 18 slices. It also consumes more power at 

219.32 mW, reflecting the increased complexity and interconnection density in the layout. This design is ideal for 

applications prioritizing speed over area and power. In contrast, the Ladner-Fischer adder consumes the highest area and 

power among the evaluated adders, with 216 gates, 36 LUTs, and 22 slices, and a power consumption of 231.56 mW. 

Despite matching the delay of the Kogge-Stone adder (16.059 ns), its complex structure and intermediate prefixing stages 

contribute to higher hardware overhead. It is suitable for systems that demand performance with less concern for resource 

constraints. The Sklansky adder occupies a middle ground in terms of area and power, using 168 gates, 28 LUTs, and 17 

slices. However, it exhibits the highest delay of 17.665 ns, largely due to its increasing fan-out at each stage, which can 

hinder speed in deeper logic levels. Its lower power consumption of 203.76 mW makes it an appealing option when 

energy efficiency is more critical than computation speed. Finally, the Hybrid-KS-RD4A adder demonstrates the most 

optimized trade-off across all parameters. It achieves the lowest area usage with only 144 gates, 24 LUTs, and 15 slices 

while maintaining a competitive delay of 16.113 ns. Its power consumption of 199.30 mW is also the lowest, showcasing 

its efficiency. The hybrid design leverages the speed advantages of Kogge-Stone and the area-efficient radix-4 adder, 

making it highly suitable for low-power, area-constrained, and moderately high-speed applications. 

 

V.      CONCLUSION 

 

In this project, a hybrid power and area efficient parallel prefix adder (PPA) based on approximate computing has been 

successfully designed and evaluated, addressing the growing need for energy-efficient and high-performance arithmetic 

units in error-tolerant applications such as image processing, machine learning, and digital signal processing. The 

proposed architecture strategically divides the adder into two segments: an approximate Least Significant Part (LSP) that 

utilizes simplified logic to reduce power and area, and an accurate Most Significant Part (MSP) that ensures precision in 

the most impactful bits. By combining the Kogge-Stone and radix-4 adder topologies and introducing approximate prefix 

operators (AxPOs), the design achieves significant improvements in power efficiency, delay performance, and silicon 

utilization. Implemented in Verilog HDL, simulated using ModelSim, and synthesized using Xilinx tools, the hybrid 

adder demonstrates superior performance when compared to traditional and other approximate PPA variants such as 

AxPPA-BK, AxPPA-KS, AxPPA-LF, and AxPPA-SK. The analysis confirms that the proposed method effectively 

balances accuracy and efficiency, providing a practical and scalable solution for low-power digital systems. This work 

showcases the potential of approximate computing in conjunction with hybrid architectural strategies to create optimized 

arithmetic circuits for modern VLSI applications, paving the way for further innovations in adaptive and application-

specific hardware design. 
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