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Abstract: This study investigates the natural convection flow and heat transfer characteristics of Powell–Eyring non-

Newtonian fluids in a porous medium, incorporating the effects of internal heat generation or absorption. The 

governing equations—continuity, momentum, and energy—are formulated for an incompressible, laminar flow regime 

and transformed into a dimensionless form using similarity variables derived through group symmetry analysis. The 

Powell–Eyring constitutive relation introduces non-linear rheological behavior, transitioning smoothly to Newtonian 

fluid behavior under specific parameter limits. The resulting coupled non-linear ordinary differential equations are 

solved numerically using established methods such as the Runge–Kutta shooting technique. Parametric analyses are 

performed to assess the influence of key dimensionless parameters, including the Prandtl number, porous drag 

coefficient, heat source/sink strength, and Powell–Eyring fluid constants, on velocity and temperature profiles. The 

findings provide insights into thermal boundary layer behavior in complex rheological fluids and are applicable to 

engineering systems involving porous media heat transfer, such as geothermal reservoirs, polymer processing, and 

energy storage devices. 

Keywords: Natural convection; Powell–Eyring fluid; Porous media; Heat source/sink; Similarity transformation; Non-

Newtonian fluids; Boundary layer theory; Numerical solution. 

 

I. INTRODUCTION 

 

Natural convection in porous media has wide-ranging applications in engineering and geophysical systems, including 

cooling of electronic components, geothermal energy extraction, and filtration processes. The study of such flows 

becomes more challenging when the working fluid exhibits non-Newtonian characteristics, as is the case with Powell–

Eyring fluids, which display shear-thinning or shear-thickening behavior depending on operational conditions. The 

Powell–Eyring model captures these complex rheological features through an inverse hyperbolic sine relation in the 

constitutive equation, providing a more accurate description of polymeric and suspension flows compared to purely 

Newtonian models. In the presence of porous structures, additional resistance due to the matrix affects the fluid motion, 

while internal heat generation or absorption further modifies the thermal field. Group similarity transformation 

techniques offer an elegant approach to reducing the governing partial differential equations into a tractable system of 

ordinary differential equations. These methods facilitate the identification of scaling laws and the parametric influences 

on flow and heat transfer behavior. The present work applies this methodology to derive similarity solutions for the 

coupled momentum and energy equations governing the natural convection of Powell–Eyring fluids in porous media, 

under the influence of a uniform heat source or sink. 

Lee and Amen (1966) focused on reducing the governing boundary-layer equations into dimensionless forms using 

similarity variables, thereby facilitating analytical and semi-analytical solutions. This pioneering study provided the 

theoretical foundation for later developments in similarity transformation techniques for non-Newtonian flow problems. 

Timol and Kalthia (1990) systematically identified similarity variables using Lie group symmetry analysis, reducing 

the partial differential equations into solvable ordinary differential equations. This method significantly influenced later 

studies by enabling generalized analytical formulations for different classes of non-Newtonian fluids. Mukhopadhyay 

et al. (2005) demonstrated the combined effects of magnetic fields and variable viscosity on velocity and temperature 

distributions, highlighting the importance of these parameters in controlling heat transfer rates. This work bridged the 

gap between pure fluid mechanics and electromagnetic effects in thermal boundary-layer theory. Mukhopadhyay et al. 

(2012) incorporated radiation heat transfer into the momentum and energy equations and examined its influence on 

velocity and temperature fields. Their findings emphasized the significance of porous drag and radiative heat flux in 

modifying boundary-layer thickness and overall thermal performance. Hayat et al. (2013) obtained self-similar 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 8, August 2025 

DOI:  10.17148/IARJSET.2025.12808 

© IARJSET                   This work is licensed under a Creative Commons Attribution 4.0 International License                  78 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

solutions and discussed the influence of non-Newtonian parameters on velocity and temperature profiles. Their study 

highlighted the sensitivity of the thermal boundary layer to variations in fluid elasticity and stretching rates. Sonawane 

et al. (2016) demonstrated how fluid elasticity and power-law index affect natural convection characteristics in vertical 

channels. The study provided practical insights for industrial processes involving non-linear rheological fluids. Darji 

and Timol. (2016) derived exact similarity solutions for various rheological models. Their results underscored the 

adaptability of group-theoretic methods for a wide range of non-Newtonian heat transfer problems. Patel et al. (2017) 

examined the effects of flow parameters such as Prandtl number and fluid elasticity on velocity and temperature fields, 

demonstrating how non-linear fluid behavior can be systematically analyzed using symmetry methods. Ferdows et al. 

(2020) incorporated buoyancy effects and stratification into the similarity framework, revealing that thermal 

stratification significantly modifies the heat transfer rate by altering temperature gradients near the wall. Mansour et 

al. (2021) showed that magnetic fields, nanoparticle concentration, and geometric configuration strongly influence heat 

transfer enhancement. This work extended classical natural convection theory to modern nanofluid applications. 

II. GOVERNING EQUATIONS 

Continuity: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0          (1) 

Ensures mass conservation for incompressible flow. 

Momentum (x-direction): 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑔𝛽(𝑇 − 𝑇∞) +

1

𝜌

𝜕𝜏𝑥𝑦

𝜕𝑦
−

𝜇

𝐾
𝑢       (2) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
: Convective acceleration. 

Buoyancy term 𝑔𝛽(𝑇 − 𝑇∞) promotes upward motion for heated fluid. 

Shear stress gradient 
𝜕𝜏𝑥𝑦

𝜕𝑦
 depends on the chosen non-Newtonian model. 

Porous drag term 
𝜇

𝐾
𝑢 reduces flow due to matrix resistance. 

Energy:   

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 +
𝑄

𝜌𝐶𝑝
(𝑇 − 𝑇∞)        (3) 

Captures convective heat transfer (LHS) balanced with thermal diffusion and internal generation (RHS). 

𝑸 introduces uniform heat generation or absorption. 

III. CONSTITUTIVE RELATION 

These define𝝉𝒙𝒚, the shear stress, essential for characterizing the non-linear behaviour of fluids: 

Powell-Eyring: 

𝜏𝑥𝑦 = 𝜇
𝜕𝑢

𝜕𝑦
[1 −

1

𝑠𝑖𝑛ℎ−1(∈
𝜕𝑢

𝜕𝑦
)
]        (4) 

 Non-linear dependence due to inverse hyperbolic sine term. 

Behaviour transitions to Newtonian when ∈→ 0. 
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Boundary Condition: 

At 𝑦 = 0:  𝑢 = 0, 𝑣 = 0, 𝑇 = 𝑇𝑊 

As𝑦 → ∞: 𝑢 → 0, 𝑇 → 𝑇∞ 

IV. INTRODUCED DIMENSIONLESS VARIABLES 

Let 

𝑥 = 𝐿𝑥∗ , 𝑦 = 𝐿𝑦∗      (spatial scaling)     (5) 

𝑢 = 𝑈0𝑢∗ ,  𝑣 = 𝑈0𝑢∗    (flow velocity scaling) 

𝑇 = 𝑇∗∆𝑇 + 𝑇∞  (temperature scaling, where 𝛥𝑇characteristic temperature difference) 

𝜏𝑥𝑦 =
𝜇𝑈0

𝐿
𝜏𝑥𝑦

∗   

Using equation (4) equation (1), (2) and (3) becomes 

𝜕𝑢∗

𝜕𝑥∗ +
𝜕𝑣∗

𝜕𝑦∗ = 0          (6)    

𝑢∗ 𝜕𝑢∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝑢∗

𝜕𝑦∗ = 𝐺𝑟𝑇∗ +
1

𝑅𝑒

𝜕𝜏𝑥𝑦
∗

𝜕𝑦∗ −
1

𝐷𝑎𝑅𝑒
𝑢∗       (7)  

𝑢∗ 𝜕𝑇∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝑇∗

𝜕𝑦∗ =
1

𝑃𝑒

𝜕2𝑇∗

𝜕𝑦∗2 + 𝑆𝑇         (8) 

Where: 

𝐺𝑟 =
𝑔𝛽Δ𝑇𝐿3

𝑉2   

𝑅𝑒 =
𝜌𝑈0𝐿

𝜇
  

𝐷𝑎 =
𝐾

𝐿2  

𝑃𝑒 =
𝑈0𝐿

𝛼
  

𝑆 =
𝑄𝐿

𝜌𝑐𝑝𝑈0
  

Non-dimensional parameters 

𝑢∗ =
𝜕𝜓∗

𝜕𝑦∗ , 𝑣∗ = −
𝜕𝜓∗

𝜕𝑥∗                  (9) 

Stream function automatically satisfies continuity equation, equation (6) & (7) becomes 

𝜓𝑦
∗ − 𝜓𝑥𝑦

∗ − 𝜓𝑥
∗ − 𝜓𝑦𝑦

∗ = 𝐺𝑟𝑇∗ +
1

𝑅𝑒

𝑑

𝑑𝑦∗ [𝜓𝑦𝑦
∗ (1 −

1

∈∗𝑠𝑖𝑛ℎ−1(∈𝜓𝑦𝑦)
)] −

1

𝐷𝑎𝑅𝑒
𝜓𝑦

∗                (10) 

 

𝜓𝑥
∗𝑇𝑥

∗ − 𝜓𝑥
∗𝑇𝑦

∗ =
1

𝑃𝑒
𝑇𝑦𝑦

∗ + 𝑆𝑇∗                    (11) 
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At 𝑦∗ = 0:  𝜓∗ = 0, 𝜓𝑦
∗ = 0, 𝑇∗ = 1 

As𝑦∗ → ∞: 𝜓𝑦
∗ → 0, 𝑇∗ → 0 

V. GROUP SIMILARITY VARIABLES 

 

To reduce the PDE system into ODEs: 

𝜂 = 𝑦∗𝑥∗−𝑎 
, 𝜓∗(𝑥∗𝑦∗) = 𝑥∗𝑏

𝑓(𝜂), 𝑇∗(𝑥∗𝑦∗)  = 𝜃(𝜂)                (12) 

Transforms the 2D boundary-layer equations into a system of coupled nonlinear ODEs with respect to similarity 

variable η. 

1) 6.  Transformed ODE System: 

(i) Momentum Equation 

Powell-Eyring: 

𝑓𝑓′′ − (𝑓′)2 = 𝐺𝑟𝜃 +
1

𝑅𝑒

𝑑

𝑑𝜂
[𝑓′′ (1 −

1

∈∗𝑠𝑖𝑛ℎ−1(∈𝑓′′)
)] −

1

𝐷𝑎𝑅𝑒
𝑓′               (13) 

Energy Equation: 

 

𝑓𝜃′ =
1

𝑃𝑒
𝜃′′ + 𝑆𝜃                   (14) 

Prandtl number (Pr )governs thermal boundary layer. 

𝑆 acts as a source/sink strength parameter, changing the profile of 𝜃. 

Boundary Conditions: 

At 𝜂 = 0:  𝑓(0) = 0, 𝑓′(0) = 0, 𝜃(0) = 1 

As𝜂 → ∞: 𝑓′(∞) → 0, 𝜃(∞) → 0 

VI. SOLUTION APPROACH 

 

To solve numerically (e.g., with Runge-Kutta), reduce the system to first-order ODEs. Introduce new variables: 

𝑓 = 𝑦1, 𝑓′ = 𝑦2,𝑓
′′ = 𝑦3, 𝜃 = 𝑦4, 𝜃′ = 𝑦5      (15) 

Then the system becomes: 

System for Powell–Eyring Fluid 
𝑑𝑦1

𝑑𝜂
= 𝑦2           (16) 

𝑑𝑦2

𝑑𝜂
= 𝑦3           (17) 

𝑑𝑦3

𝑑𝜂
=

𝑦1𝑦3−𝑦2
2−𝐺𝑟𝑦4+

1

𝐷𝑎𝑅𝑒
𝑦2

1

𝑅𝑒
(1−

1

∈∗𝑠𝑖𝑛ℎ−1(∈𝑓′′′)
)

        (18) 

𝑑𝑦4

𝑑𝜂
= 𝑦5           (19) 

𝑑𝑦5

𝑑𝜂
= 𝑃𝑒(𝑦1𝑦5 − 𝑆𝑦4)         (20) 

Boundary Conditions in New Variables 

𝑦1(0) = 𝑓(0) = 0  
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𝑦2(0) = 𝑓′(0) = 0  

𝑦4(0) = 𝜃(0) = 1  

𝑦2(∞) = 𝑓′(∞) = 0  

𝑦4(∞) = 𝜃(∞) = 0  

VII. RESULTS AND DISCUSSION 

 
 

 
 

 
 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 8, August 2025 

DOI:  10.17148/IARJSET.2025.12808 

© IARJSET                   This work is licensed under a Creative Commons Attribution 4.0 International License                  82 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

 
 

 
The graph (1) depicts the variation of the dimensionless temperature profile θ(η) with the similarity variable η for 

different Prandtl numbers (Pr=0.7,1.0,3.0,) in the absence of a heat source/sink (S=0). It shows that as the Prandtl 

number increases, the thermal boundary layer becomes thinner and the temperature decays more rapidly away from the 

wall. For lower Prandtl numbers (e.g., Pr=0.7), heat diffuses more quickly relative to momentum, resulting in a thicker 

thermal boundary layer and a slower decay of temperature. Conversely, for higher Prandtl numbers (e.g., Pr=7.0), heat 

conduction is weaker compared to momentum diffusion, leading to a sharper drop in temperature close to the wall. This 

behavior is consistent with the physical meaning of the Prandtl number, where higher values indicate fluids with lower 

thermal diffusivity. 

The graph (2) illustrates the influence of the heat source/sink parameter S on the dimensionless temperature profile θ(η) 

for a fixed Prandtl number (Pr=1.0). When S>0 (e.g., S=0.5, blue curve), representing a heat source, the temperature 

remains higher throughout the boundary layer and decays more slowly with η, indicating a thicker thermal boundary 

layer due to additional heat generation. For S=0 (red dashed line), representing no heat source or sink, the temperature 

decay follows a baseline profile. When S<0 (e.g., S=−0.5, black dash-dotted line), representing a heat sink, the 

temperature decreases more rapidly with η, resulting in a thinner thermal boundary layer as heat is removed from the 

fluid. This trend clearly shows that a heat source enhances temperature distribution, whereas a heat sink suppresses it. 

The graph (3) presents the variation of thermal layer thickness δt (evaluated at 1% of the wall temperature) with the 

Prandtl number (Pr) for different heat source/sink values (S=−0.5,0.0,0.5). Across all cases, δt  decreases sharply as Pr 

increases, indicating that higher Prandtl numbers correspond to thinner thermal boundary layers due to reduced thermal 

diffusivity. For a given Pr, the presence of a heat source (S=0.5, red curve) leads to the largest δt , as additional heat 

generation increases the temperature penetration into the fluid. The baseline case (S=0.0, blue curve) lies between the 

two extremes. In contrast, a heat sink (S=−0.5, black curve) produces the thinnest thermal layer, as heat removal 
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suppresses temperature diffusion away from the wall. The gap between the curves is most pronounced at low Pr and 

narrows at higher Pr, showing that heat source/sink effects are more significant in fluids with higher thermal diffusivity. 

The graph (4) illustrates the effect of the Powell–Eyring fluid parameter ε\varepsilonε on the dimensionless velocity 

profile 𝑓′(𝜂) ≈
𝑢

𝑈∞
 for a fixed porous medium parameter (K=1.0). As ε\varepsilonε increases from 0.0 to 1.0, the 

velocity profile rises more gradually near the wall and approaches the free-stream velocity at a slightly larger η. This 

indicates that higher ε values, representing stronger non-Newtonian effects in the Powell–Eyring model, tend to reduce 

the velocity gradient at the wall and slightly thicken the momentum boundary layer. For ε=0.0, the behavior 

corresponds to a Newtonian fluid, exhibiting the steepest initial velocity rise. The differences among profiles are more 

noticeable close to the wall region (η<2) and diminish farther from it, where all curves converge to the free-stream 

value. 

The graph (5) shows the influence of the porous drag parameter K on the dimensionless velocity profile 𝑓′(𝜂) ≈
𝑢

𝑈∞
 for 

a Powell–Eyring fluid with ε=0.5. As K increases from 0.0 to 5.0, the velocity profiles become noticeably flatter near 

the wall and rise more gradually toward the free-stream value. This behavior reflects the enhanced resistance offered by 

the porous medium: higher K values correspond to greater drag, which suppresses fluid motion and thickens the 

momentum boundary layer. For K=0.0 (no porous resistance), the velocity increases rapidly from the wall and reaches 

the free-stream value more quickly, indicating a thinner boundary layer. The effect of K is most significant within the 

near-wall region (η<3) and diminishes farther away, where all profiles eventually converge to unity. 

 

VIII. CONCLUDING REMARKS 

 

The similarity transformation approach effectively reduces the governing equations for Powell–Eyring fluid flow in a 

porous medium to a coupled set of non-linear ordinary differential equations, enabling efficient numerical analysis. The 

results highlight the significant influence of fluid rheology, porous drag, and heat generation/absorption on velocity and 

temperature distributions. Specifically: 

(i) Increasing the non-Newtonian parameters alters the velocity gradient near the wall and modifies the thickness of the 

thermal boundary layer. 

(ii) Heat source effects elevate temperature profiles, while heat sinks reduce them, directly impacting the convective 

heat transfer rate. 

(iii) The porous medium’s resistance dampens fluid motion, leading to steeper thermal gradients. 

(iv) Prandtl number variations significantly influence the thermal layer thickness, with higher values reducing heat 

diffusion. 

These findings are relevant to the design and optimization of systems where controlling heat transfer in non-Newtonian 

porous flows is critical. Future studies could extend this work to include transient effects, anisotropic porous media, 

and magnetohydrodynamic influences for broader applicability. 
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