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Abstract: The deployment of machine learning models in critical decision making requires reliable explanations that 

remain stable under varying data conditions. While SHapley Additive exPlanations (SHAP) provides theoretically 

grounded feature importance rankings, the stability of these explanations when models encounter corrupted or degraded 

data remains poorly understood. This study investigates the robustness of SHAP feature importance rankings under 

controlled data corruption scenarios across three classification algorithms and datasets of varying complexity. The 

methodology employs optimally regularized Logistic Regression, Random Forest, and XGBoost models trained on 

medical, financial, and text classification datasets. Controlled corruption mechanisms combining 5% random sample 

removal and Gaussian noise injection with standard deviation equal to 0.1 times feature standard deviation simulate 

realistic data quality degradation. Stability metrics including Spearman correlation, Kendall tau, and top k feature overlap 

quantify ranking preservation. Results demonstrate that properly regularized models maintain substantial SHAP stability, 

with Spearman correlations exceeding 0.89 across all configurations. Random Forest exhibits superior stability with near 

perfect correlation (0.999) on structured data, while maintaining correlations above 0.95 across all scenarios. The findings 

establish that appropriate regularization and model selection enable reliable SHAP explanations even under moderate 

data corruption, providing practical guidelines for deploying interpretable machine learning in production environments 

where data quality cannot be guaranteed. 

 

Keywords: SHAP, explainable AI, feature importance, model interpretability, data corruption, robustness analysis. 

 

1. INTRODUCTION 

 

Machine learning models increasingly influence critical decisions across healthcare, finance, criminal justice, and social 

services, where understanding the rationale behind predictions becomes as important as accuracy itself (Rudin, 2019). 

The proliferation of complex ensemble methods and deep learning architectures has created a fundamental tension 

between predictive performance and interpretability, leading to the characterization of sophisticated models as "black 

boxes" that resist human comprehension (Lipton, 2018). This opacity poses significant challenges for regulatory 

compliance, stakeholder trust, and error diagnosis, particularly in domains where decisions carry substantial 

consequences for individuals and society. 

The demand for interpretable machine learning has driven the development of various explanation methods that aim to 

illuminate the decision processes of complex models. Among these approaches, SHapley Additive exPlanations (SHAP) 

has emerged as a prominent framework for feature attribution, providing theoretically grounded explanations based on 

cooperative game theory (Lundberg & Lee, 2017). SHAP values offer consistent and locally accurate explanations by 

distributing a prediction's output among input features according to their marginal contributions, satisfying desirable 

properties such as local accuracy, missingness, and consistency (Lundberg et al., 2020). The method has gained 

widespread adoption across diverse applications, from medical diagnosis (Rodríguez-Pérez & Bajorath, 2020) to credit 

risk assessment (Bussmann et al., 2021), due to its ability to provide both global feature importance rankings and local 

explanation for individual predictions. 

Despite the theoretical elegance and practical utility of SHAP, concerns have emerged regarding the stability and 

reliability of these explanations under varying conditions. Recent studies have demonstrated that feature importance 

rankings can exhibit sensitivity to minor perturbations in training data, model parameters, and computational 

approximations (Slack et al., 2020; Alvarez-Melis & Jaakkola, 2018). This instability raises fundamental questions about 

the trustworthiness of model explanations, particularly when deployed in production environments where data quality 

cannot be perfectly controlled. The phenomenon becomes especially problematic when explanations guide high stakes 
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decisions or regulatory compliance, as inconsistent feature attributions may undermine stakeholder confidence and legal 

defensibility. 

The vulnerability of explanation methods to data quality degradation represents a critical yet understudied aspect of 

interpretable machine learning. Real world data collection processes invariably introduce various forms of corruption, 

including measurement noise, missing values, and sampling biases (Frénay & Verleysen, 2014). While extensive research 

has examined model robustness to noisy data (Nettleton et al., 2010), the stability of explanation methods under such 

conditions remains largely unexplored. Kumar et al. (2020) demonstrated that adversarial perturbations can manipulate 

LIME explanations while preserving model predictions, suggesting that explanation methods may be more fragile than 

the models they interpret. Similarly, Ghorbani et al. (2019) showed that imperceptible changes to input data can 

dramatically alter feature importance rankings, raising concerns about the reliability of explanations in adversarial 

settings. 

The existing literature on explanation stability has primarily focused on adversarial scenarios or theoretical worst case 

analyses, leaving a gap in understanding how explanations behave under realistic data corruption patterns encountered 

in practice. Previous studies have typically examined single perturbation types in isolation (Dombrowski et al., 2019) or 

focused on specific model architectures (Hooker et al., 2019), without providing comprehensive analysis across different 

algorithms, datasets, and corruption mechanisms. Furthermore, the relationship between model regularization, 

overfitting, and explanation stability remains poorly understood, despite regularization being a standard practice for 

improving model generalization (Zhang et al., 2021). 

This research addresses these limitations by conducting a systematic investigation of SHAP feature importance stability 

under controlled data corruption scenarios. The study examines three widely used classification algorithms (Logistic 

Regression, Random Forest, and XGBoost) across datasets of varying complexity, applying realistic corruption 

mechanisms that combine Gaussian noise injection with random sample removal. By employing optimally regularized 

models that minimize overfitting, the research isolates the impact of data quality degradation on explanation stability 

from confounding factors related to poor model specification. 

The primary contributions of this work include: (1) a comprehensive empirical analysis of SHAP stability across multiple 

model architectures and dataset complexities under realistic corruption scenarios; (2) quantification of the relationship 

between regularization strength, model performance, and explanation robustness; (3) identification of model and dataset 

characteristics that influence explanation stability; and (4) practical guidelines for selecting and configuring models to 

maintain reliable explanations in production environments. The findings demonstrate that properly regularized models 

can maintain substantial explanation stability even under moderate data corruption, with ensemble methods showing 

superior robustness compared to single learners. These results provide empirical evidence supporting the deployment of 

SHAP explanations in real world applications while highlighting the importance of appropriate model selection and 

configuration for maintaining interpretability under imperfect conditions. 

 

2. RELATED WORKS 

 

2.1 Interpretability Methods in Machine Learning 

The development of post hoc explanation methods has emerged as a dominant approach for interpreting complex machine 

learning models. Ribeiro et al. (2016) introduced Local Interpretable Model-agnostic Explanations (LIME), which 

approximates model behavior locally using interpretable surrogates, though subsequent research revealed sensitivity to 

sampling parameters and instability across similar instances (Alvarez-Melis & Jaakkola, 2018). The SHAP framework 

proposed by Lundberg and Lee (2017) unified several existing methods under a game theoretic foundation, providing 

unique solutions that satisfy desirable axioms including local accuracy and consistency. Comparative studies have 

demonstrated SHAP's superior theoretical properties and practical performance across diverse domains (Covert et al., 

2021), though computational complexity remains a challenge for high dimensional data. 

Alternative approaches to model interpretability include gradient based methods for neural networks (Sundararajan et al., 

2017), attention mechanisms that highlight relevant input regions (Vaswani et al., 2017), and counterfactual explanations 

that identify minimal changes needed to alter predictions (Wachter et al., 2017). Each method offers distinct advantages 

and limitations, with SHAP providing a middle ground between computational efficiency and theoretical rigor. The 

proliferation of explanation methods has led to calls for standardized evaluation frameworks, as proposed by Adebayo et 

al. (2018), who demonstrated that some popular methods fail basic sanity checks when model parameters are randomized. 

 

2.2 Stability and Robustness of Explanations 

The reliability of explanation methods under perturbations has attracted increasing scrutiny as these techniques move 

from research to deployment. Ghorbani et al. (2019) demonstrated that adversarially crafted perturbations can 

dramatically alter feature attributions while maintaining prediction accuracy, revealing a fundamental vulnerability in 

explanation methods. Their work showed that explanations can be more fragile than the models they interpret, with 

imperceptible changes to inputs causing substantial shifts in feature importance rankings. Dombrowski et al. (2019) 
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extended this analysis to show that simple transformations like rotation or translation can cause significant changes in 

saliency maps for image classifiers, questioning the reliability of visual explanations. 

The distinction between adversarial and natural perturbations has important implications for practical deployment. While 

adversarial attacks represent worst case scenarios, Hooker et al. (2019) argued that realistic corruptions provide more 

relevant insights for real world applications. Their analysis of neural network explanations under common image 

corruptions revealed that some architectures maintain more stable attributions than others, suggesting that model design 

influences explanation robustness. Similarly, Agarwal et al. (2022) examined explanation stability across different 

random seeds and training runs, finding substantial variability in feature importance rankings even for models with 

comparable performance. 

Recent work has begun exploring the relationship between model properties and explanation stability. Fel et al. (2021) 

demonstrated that smoother decision boundaries lead to more stable gradient based explanations, while Zhou et al. (2022) 

showed that ensemble methods naturally provide more robust feature attributions through averaging effects. These 

findings suggest that architectural choices and training procedures significantly impact explanation reliability, though 

systematic guidelines for achieving stable explanations remain underdeveloped. 

 

2.3 Data Quality and Model Robustness 

The impact of data corruption on model performance has been extensively studied across machine learning paradigms. 

Nettleton et al. (2010) provided a comprehensive analysis of noise effects on classification algorithms, demonstrating 

that ensemble methods generally exhibit greater resilience than single learners. Their work established that different noise 

types (attribute noise, class noise, and missing values) affect algorithms differently, with tree based methods showing 

particular vulnerability to attribute noise. Frénay and Verleysen (2014) surveyed label noise in supervised learning, 

identifying regularization and robust loss functions as effective mitigation strategies. 

The relationship between overfitting and noise sensitivity has important implications for both prediction and 

interpretation. Zhang et al. (2021) demonstrated that deep neural networks can memorize random labels, achieving perfect 

training accuracy while failing to generalize, highlighting the importance of appropriate regularization. Belkin et al. 

(2019) described the "double descent" phenomenon, where highly overparameterized models can achieve good 

generalization despite perfectly fitting noisy training data, challenging traditional understanding of the bias variance 

tradeoff. These findings suggest that model capacity and regularization interact in complex ways to determine robustness 

to data corruption. 

Recent research has examined how data augmentation and preprocessing affect model stability. Hendrycks and Dietterich 

(2019) introduced a benchmark for evaluating model robustness to common corruptions, revealing substantial 

performance degradation even for state of the art architectures. Chen et al. (2020) showed that simple data augmentation 

techniques can significantly improve robustness, though the benefits vary across model types and corruption patterns. 

These studies provide context for understanding how data quality affects model behavior, though they primarily focus 

on prediction accuracy rather than explanation stability. 

 

2.4 SHAP Applications and Limitations 

The widespread adoption of SHAP across domains has revealed both strengths and limitations of the approach. In 

healthcare applications, Lundberg et al. (2020) demonstrated SHAP's utility for identifying risk factors in mortality 

prediction, showing how tree based SHAP values can efficiently handle large scale electronic health records. Rodríguez-

Pérez and Bajorath (2020) applied SHAP to drug discovery, revealing previously unknown structure activity 

relationships, though they noted challenges in handling molecular representations with inherent symmetries. Wang et al. 

(2021) applied SHAP values to tree-based machine learning methods for process analytics in wastewater treatment plants, 

demonstrating how feature importance rankings could identify key operational parameters for process optimization. 

Financial applications have particularly embraced SHAP for regulatory compliance and risk assessment. Bussmann et al. 

(2021) evaluated SHAP explanations for credit scoring models, finding that stakeholders preferred SHAP over other 

explanation methods for its intuitive interpretation and consistency. However, Bracke et al. (2019) cautioned that SHAP 

values can be misleading when features are highly correlated, as the attribution of shared effects becomes arbitrary. This 

limitation is particularly relevant in financial data where economic indicators often move together. 

Critical evaluations of SHAP have identified several theoretical and practical limitations. Slack et al. (2020) demonstrated 

that SHAP explanations can be manipulated by adversarial classifiers that hide biased behavior while producing 

seemingly fair explanations. Kumar et al. (2020) showed that out of distribution inputs can produce unreliable SHAP 

values, as the method assumes that feature distributions match the training data. Merrick and Taly (2020) argued that the 

choice of background distribution significantly affects SHAP values, yet practitioners often use defaults without 

considering their implications. These critiques highlight the need for careful application and interpretation of SHAP 

explanations. 
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2.5 Evaluation Metrics for Explanation Quality 

The assessment of explanation methods requires metrics that capture different aspects of quality and utility. Quantitative 

metrics for explanation stability include ranking correlation measures such as Spearman's rank correlation and Kendall's 

tau, which assess the consistency of feature orderings (Hooker et al., 2019). Top k intersection metrics evaluate whether 

the most important features remain consistent, which is particularly relevant for applications that focus on key drivers 

(Fel et al., 2021). Bhatt et al. (2020) proposed measuring explanation infidelity as the mean squared error between 

explanation attributions and model behavior, providing a fidelity metric that complements stability measures. 

Human centered evaluation of explanations presents additional challenges and opportunities. Doshi-Velez and Kim 

(2017) outlined a framework for rigorous human evaluation of interpretability, distinguishing between functionally 

grounded, human grounded, and application grounded evaluations. Poursabzi-Sangdeh et al. (2021) conducted large scale 

human subject experiments showing that increasing model transparency does not always improve human decision 

making, and can sometimes lead to overconfidence in incorrect predictions. These findings emphasize that technical 

metrics alone cannot fully assess explanation quality. 

Recent work has attempted to bridge technical and human centered evaluation approaches. Nauta et al. (2023) proposed 

a comprehensive evaluation framework combining computational metrics with user studies, demonstrating that different 

stakeholders prioritize different aspects of explanation quality. Chen et al. (2022) introduced metrics for measuring the 

actionability of explanations, assessing whether feature attributions provide useful guidance for improving outcomes. 

These developments suggest that explanation evaluation requires multiple complementary perspectives, though 

standardized benchmarks remain elusive. 

 

2.6 Research Gap 

Despite extensive research on interpretability methods and model robustness, the stability of SHAP explanations under 

realistic data corruption remains inadequately addressed. Previous studies have primarily focused on adversarial 

perturbations designed to maximally disrupt explanations (Ghorbani et al., 2019; Slack et al., 2020) or examined single 

corruption types in isolation (Dombrowski et al., 2019), without considering the compound effects of multiple 

degradation mechanisms encountered in practice. The relationship between model regularization, which is standard 

practice for preventing overfitting, and explanation stability has received limited attention despite its potential importance 

for maintaining reliable interpretations. 

Furthermore, existing work has not systematically compared explanation stability across different model architectures, 

dataset complexities, and corruption scenarios within a unified framework. This gap prevents practitioners from making 

informed decisions about model selection and configuration when explanation reliability is a primary concern. The 

present research addresses these limitations by conducting comprehensive experiments that quantify SHAP stability 

under controlled yet realistic corruption conditions, providing empirical evidence and practical guidelines for deploying 

interpretable machine learning in imperfect data environments. 

 

3. METHODOLOGY 

 

3.1 Research Framework 

This study employs a systematic approach to evaluate the robustness of SHAP feature importance rankings under 

controlled data corruption scenarios. The methodology comprises nine sequential stages designed to assess how machine 

learning models maintain explanation stability when training data quality degrades. Figure 1 illustrates the complete 

implementation workflow, demonstrating the progression from data acquisition through final analysis. 

 

 
 

Figure 1: Implementation Workflow for SHAP Stability Analysis 
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The workflow follows a structured pipeline where standard preprocessing and baseline training establish reference 

metrics, followed by controlled corruption processes that simulate real world data quality issues. The dual SHAP analysis 

phases, before and after corruption, enable quantitative assessment of feature ranking stability. 

 

3.2 Dataset Selection and Characteristics 

Three binary classification datasets representing varying complexity levels were selected to evaluate model behavior 

across different problem domains. Table 1 presents the fundamental properties of each dataset, demonstrating the 

progression from simple medical diagnosis to complex text classification tasks. 

 

Table 1: Dataset Properties and Characteristics 

 

Dataset Domain Samples Features Classes Difficulty Description 

Breast 

Cancer 

Medical 569 30 2 Easy Wisconsin Breast Cancer 

diagnostic data for tumor 

classification 

Adult 

Income 

Financial/Census 26,048 30 2 Medium US Census data for income 

prediction above or below $50K 

threshold 

Spambase Text/Email 4,601 57 2 Hard Email spam detection based on 

word and character frequency 

features 

 

Figure 2 provides a visual comparison of dataset characteristics across three dimensions: sample size, feature 

dimensionality, and classification difficulty. The Breast Cancer dataset represents the simplest classification task with 

569 samples and well separated classes. The Adult Income dataset introduces moderate complexity with 26,048 samples 

requiring demographic and employment features for income prediction. The Spambase dataset presents the greatest 

challenge with 57 features derived from text analysis for spam detection. 

 

 
 

Figure 2: Dataset Characteristics Comparison 

 

3.3 Data Preprocessing Pipeline 

The preprocessing pipeline ensures consistent data quality and comparability across all experiments. Each dataset 

undergoes five standardized preprocessing steps: 

1. Missing Value Imputation: Numerical features containing missing values are imputed using median values 

calculated from the training set to maintain statistical properties without introducing bias. 

2. Duplicate Removal: Identical samples are identified and removed to prevent artificial inflation of model 

performance metrics. 

3. Train Test Splitting: Data partitioning follows an 80/20 split with stratification to preserve class distributions. 

The random seed remains fixed at 42 throughout all experiments to ensure reproducibility. 
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4. Feature Standardization: All features undergo standardization using the StandardScaler transformation, 

centering features at zero mean with unit variance. The scaler parameters are fitted exclusively on training data 

and applied to test data to prevent information leakage. 

5. Class Balance Assessment: The ratio between minority and majority classes is calculated to identify potential 

imbalance issues. Datasets with ratios below 0.3 trigger balanced class weight adjustments in model training. 

 

3.4 Model Configuration and Optimization 

Three classification algorithms were selected to represent different modeling paradigms: linear models through Logistic 

Regression, ensemble methods via Random Forest, and gradient boosting through XGBoost. Table 2 details the optimal 

hyperparameters determined through preliminary gap analysis to minimize overfitting while maintaining predictive 

performance. 

 

Table 2: Optimal Model Hyperparameters 

 

Parameter Logistic Regression XGBoost Random Forest 

C (Regularization) 0.05 - - 

max_iter 1000 - - 

solver liblinear - - 

n_estimators - 100 100 

max_depth - 1 1 

learning_rate - 0.1 - 

reg_alpha - 1.0 - 

reg_lambda - 2.0 - 

min_samples_split - - 20 

min_samples_leaf - - 10 

class_weight balanced - balanced 

 

The hyperparameter selection prioritizes generalization over training accuracy. Logistic Regression employs strong L2 

regularization with C=0.05 to prevent coefficient explosion. XGBoost utilizes stumps with max_depth=1 combined with 

L1 and L2 regularization to control model complexity. Random Forest similarly restricts tree depth to single splits while 

requiring minimum samples of 20 for node splitting and 10 for leaf nodes. 

 

Figure 3 presents the learning curves for the Spambase dataset, demonstrating minimal gaps between training and cross 

validation scores across all models. The gaps remain below 0.005 for all three algorithms, confirming successful 

regularization without underfitting. 

 

 
Figure 3: Learning Curves - Spambase Dataset 

 

3.5 Data Corruption Methodology 

The corruption process simulates two common data quality degradation scenarios encountered in production 

environments. Figure 4 illustrates the two stage corruption pipeline applied to training data. 
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Figure 4: Data Corruption Methodology 

 

The corruption methodology implements: 

1. Random Sample Removal: Five percent of training samples are randomly removed to simulate incomplete 

data collection or sample loss. The removal process maintains temporal consistency by using a fixed random 

seed. 

2. Gaussian Noise Injection: Zero mean Gaussian noise with standard deviation equal to 0.1 times each feature's 

standard deviation is added to all remaining samples. This feature specific scaling ensures proportional 

corruption across different measurement scales. 

The mathematical formulation for noise injection follows: 

 

 X_corrupted[i,j] = X_original[i,j] + ε    (1) 

 

where ε ~ N(0, 0.1 * σ_j) 

 

Here, σ_j represents the standard deviation of feature j calculated from the original training data. This approach preserves 

relative feature importance while introducing controlled perturbations. 

 

Standardization precedes corruption. Let σ_raw,j denote the standard deviation of feature j on the raw training data. 

Gaussian noise is injected in standardized space as ε_z ~ N(0, 0.1), which corresponds to ε ~ N(0, 0.1·σ_raw,j) in raw 

space. Corruption is applied only to the training set; the test set remains clean. 

 

This corruption process is applied exclusively to the training data. The test set remains unmodified to ensure consistent 

evaluation conditions and isolate the impact of training data corruption on model explanations. 

 

3.6 SHAP Value Computation 

SHAP values are computed using model specific explainers to ensure computational efficiency and theoretical 

consistency. Linear models employ the LinearExplainer, which leverages the additive nature of linear predictions. Tree 

based models utilize the TreeExplainer, implementing an exact algorithm for computing SHAP values in polynomial 

time. 

For each model and dataset combination, the SHAP analysis proceeds through: 

1. Baseline Computation: SHAP values are calculated for the model trained on clean data, establishing 

reference feature importance rankings. These values are computed using the clean test set. 

2. Model Retraining: The model undergoes complete retraining on corrupted training data (with 5% samples 

removed and Gaussian noise added) to simulate real world model updates under degraded conditions. 

3. Corrupted Computation: SHAP values are recalculated using the retrained model applied to the clean test 

set, capturing how feature importance shifts when the model is trained on corrupted data while maintaining 

consistent evaluation conditions. 

Feature importance scores derive from the mean absolute SHAP values across all test samples: 

 

 Importance_j = (1/N) * Σ|SHAP_ij|    (2)   
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where N represents the number of test samples and SHAP_ij denotes the SHAP value for feature j in sample i. 

 

3.7 Stability Metrics 

Five complementary metrics quantify the stability of feature importance rankings between baseline and corrupted 

conditions: 

1. Spearman Rank Correlation: Measures monotonic relationships between feature rankings, ranging from -1 to 

1 where higher values indicate greater stability. 

2. Kendall Tau Correlation: Assesses concordance between ranking pairs, providing a robust alternative to 

Spearman correlation for ordinal data. 

3. Top-5 Feature Overlap: Calculates the proportion of features remaining in the top 5 positions after corruption, 

critical for identifying the most influential predictors. 

4. Top-10 Feature Overlap: Extends overlap analysis to the top 10 features, capturing stability among moderately 

important features. 

5. Mean Rank Change: Computes the average absolute change in feature positions, quantifying overall ranking 

disruption. 

6. Overfitting Severity: Categorizes the degree of overfitting based on the train-test accuracy gap:  

• Low: Gap < 0.05 

• Medium: 0.05 ≤ Gap < 0.10 

• High: Gap ≥ 0.10 

7. Generalization Score: Quantifies how well test performance matches training performance: Generalization 

Score = Test Accuracy / Train Accuracy Values approaching 1.0 indicate excellent generalization, while 

values significantly below 1.0 suggest overfitting.  

8. Max Rank Change: The maximum absolute change in rank position for any single feature between baseline 

and corrupted conditions: Max Rank Change = max(|rank_baseline(i) - rank_corrupted(i)|) for all features i 

 

3.8 Experimental Protocol 

Each experiment follows a standardized protocol to ensure consistency and reproducibility: 

1. Dataset loading and initial statistics computation 

2. Preprocessing pipeline application with progress tracking 

3. Model instantiation with optimal hyperparameters 

4. Baseline training and performance evaluation 

5. SHAP value computation on clean data 

6. Data corruption application 

7. Model retraining on corrupted data 

8. SHAP value recomputation 

9. Stability metric calculation 

10. Visualization generation and result persistence 

 

Figure 5 displays the learning curves for the Adult Income dataset, revealing near-perfect generalization with 

approximately zero gaps between training and validation scores for all models. This exceptional performance validates 

the effectiveness of the regularization strategy. 

 

 
 

Figure 5: Learning Curves - Adult Income Dataset 
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All experiments utilize fixed random seeds to ensure complete reproducibility. Specifically, random seeds were set to 42 

for all operations: scikit-learn models via the random_state parameter, XGBoost via both random_state and seed 

parameters, and NumPy operations via np.random.seed(42). This ensures consistent results across all model architectures 

and corruption processes. Results are automatically saved in structured directories with timestamps, preserving both raw 

data and processed metrics for subsequent analysis. The implementation leverages scikit-learn 1.0.2 for model training, 

SHAP 0.41.0 for explanation generation, and NumPy 1.21.5 for numerical computations. 

 

4. RESULTS AND DISCUSSION 

 

This section presents the experimental findings from the SHAP stability analysis across three datasets of varying 

complexity. The results demonstrate the relationship between data corruption, model regularization, and feature 

importance stability, providing empirical evidence for the robustness of SHAP explanations under degraded data 

conditions. 

 

4.1 Results 

4.1.1 Model Performance Evaluation 

Figure 6 illustrates the performance metrics across all three datasets and models. The test accuracy remains consistently 

high for the Easy dataset, with all models achieving above 92% accuracy. Logistic Regression and XGBoost both achieve 

95.6% accuracy, while Random Forest reaches 92.1%. The Medium dataset shows greater variation in model 

performance, with XGBoost achieving the highest accuracy at 86.7%, followed by Logistic Regression at 82.1% and 

Random Forest at 73.5%. The Hard dataset demonstrates strong performance across all models, with XGBoost leading 

at 92.9%, Logistic Regression at 92.2%, and Random Forest at 89.7%. 

 

 
Figure 6: Model Performance Metrics Across Datasets 

 

The train test gap analysis reveals strong generalization capabilities across all models. The Easy dataset exhibits gaps 

ranging from 0.001 to 0.031, with Random Forest showing the smallest gap at 0.017. Remarkably, the Medium dataset 

demonstrates excellent generalization with minimal gaps of -0.001 for XGBoost and 0.000 for Random Forest, while 

Logistic Regression maintains a minimal gap of 0.001. The Hard dataset maintains gaps below 0.008 for all models, 

confirming successful regularization without underfitting. 
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Figure 7 presents the ROC curves for all model dataset combinations. The Easy dataset shows exceptional discrimination 

ability with AUC values of 0.996 for Logistic Regression, 0.993 for XGBoost, and 0.988 for Random Forest. The Medium 

dataset maintains strong performance with AUC values ranging from 0.881 to 0.918, despite the increased complexity. 

The Hard dataset demonstrates robust classification with all models achieving AUC values of 0.963 or higher, indicating 

excellent separation between spam and legitimate emails. 

 

 
Figure 7: ROC Curves - All Models Across Datasets 

 

Figure 8 displays the confusion matrices for all nine model dataset combinations. The Easy dataset shows minimal 

misclassification errors, with XGBoost achieving only 5 total errors (4 false positives, 1 false negative) out of 114 test 

samples. The Medium dataset reveals class imbalance challenges, particularly for Random Forest, which achieves 73.5% 

test accuracy. The confusion matrix in Figure 8 illustrates the model's tendency to predict the majority class more 

frequently, resulting in a higher false positive rate compared to false negatives. This performance pattern is characteristic 

of Random Forest's response to class imbalance when using balanced class weights, where the model attempts to 

compensate for minority class underrepresentation but may overcorrect, leading to increased false positives. Despite these 

classification challenges, the model maintains reasonable discriminative ability with an AUC of 0.881, suggesting that 

probability thresholds could be adjusted to improve the precision-recall trade-off for specific deployment requirements. 

The Hard dataset demonstrates balanced performance across all models, with XGBoost achieving the best balance 

between sensitivity and specificity. 
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Figure 8: Confusion Matrices - All Models and Datasets 

 

 

Table 3 provides a comprehensive summary of the overfitting analysis. All nine model configurations demonstrate low 

overfitting severity, with train test gaps remaining below 0.031. The generalization scores range from 0.969 to 1.001, 

indicating that test performance closely matches training performance across all scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://iarjset.com/
https://iarjset.com/
https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 12, Issue 8, August 2025 

DOI:  10.17148/IARJSET.2025.12810 

© IARJSET                     This work is licensed under a Creative Commons Attribution 4.0 International License                    103 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

Table 3: Overfitting Analysis Summary 

 

Dataset Model Train 

Accuracy 

Test 

Accuracy 

Train-

Test 

Gap 

Overfitting 

Severity 

Generalization 

Score 

F1 

Score 

ROC-

AUC 

MCC 

Easy Logistic 

Regression 

0.982 0.956 0.026 Low 0.973 0.965 0.996 0.909 

Easy XGBoost 0.987 0.956 0.031 Low 0.969 0.966 0.993 0.906 

Easy Random 

Forest 

0.938 0.921 0.017 Low 0.981 0.935 0.988 0.838 

Medium Logistic 

Regression 

0.822 0.821 0.001 Low 0.998 0.695 0.914 0.594 

Medium XGBoost 0.866 0.867 -

0.001 

Low 1.001 0.670 0.918 0.608 

Medium Random 

Forest 

0.736 0.735 0.000 Low 0.999 0.605 0.881 0.470 

Hard Logistic 

Regression 

0.930 0.922 0.008 Low 0.991 0.904 0.969 0.838 

Hard XGBoost 0.933 0.929 0.004 Low 0.996 0.908 0.979 0.851 

Hard Random 

Forest 

0.903 0.897 0.007 Low 0.993 0.866 0.963 0.783 

 

4.1.2 SHAP Stability Analysis 

Figure 9 presents the comprehensive SHAP stability metrics under data corruption. The Spearman correlation values 

demonstrate strong ranking preservation across all models and datasets. Logistic Regression maintains correlations of 

0.982 for Easy and 0.962 for Medium datasets, with 0.968 for the Hard dataset. Random Forest shows the highest overall 

stability with correlations of 0.96, 1.00, and 0.95 for Easy, Medium, and Hard datasets respectively. XGBoost exhibits 

moderate stability with correlations ranging from 0.89 to 1.00. 

 

 
Figure 9: SHAP Feature Importance Stability Under Data Corruption 
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The Top 5 feature overlap analysis reveals critical differences in model behavior. Logistic Regression achieves perfect 

overlap (1.0) for the Easy dataset but drops to 0.6 for Hard data. Random Forest maintains perfect overlap for both Easy 

and Medium datasets, declining to 0.8 for Hard data. XGBoost shows the most variation, with overlap values of 0.6, 1.0, 

and 0.8 across the three datasets. 

Mean rank change metrics provide additional insight into stability patterns. Logistic Regression demonstrates increasing 

instability with dataset complexity, showing mean rank changes of 1.25, 3.5, and 1.4 for Easy, Medium, and Hard datasets 

respectively. Random Forest exhibits the most consistent behavior with mean rank changes below 2.3 across all datasets. 

XGBoost shows comparable, moderate rank shifts across datasets, with the largest mean rank change observed on the 

Hard dataset. 

 

Table 4 presents the detailed performance metrics across all experimental conditions, providing a comprehensive view 

of model behavior under both clean and corrupted conditions.  

 

Table 4: Performance Metrics Summary 

Dataset Model Spearman 

Correlation 

Kendall 

Tau 

Top-5 

Overlap 

Top-10 

Overlap 

Mean Rank 

Change 

Max Rank 

Change 

Easy Logistic 

Regression 

0.982 0.898 1.000 0.900 1.250 5.0 

Easy XGBoost 0.890 0.774 0.600 0.700 1.433 5.0 

Easy Random 

Forest 

0.957 0.876 1.000 0.900 0.700 3.0 

Medium Logistic 

Regression 

0.962 0.839 0.600 0.800 3.500 18.0 

Medium XGBoost 0.974 0.859 1.000 0.800 1.500 13.0 

Medium Random 

Forest 

0.999 0.970 1.000 0.900 0.300 2.0 

Hard Logistic 

Regression 

0.968 0.808 0.600 0.700 1.404 16.0 

Hard XGBoost 0.896 0.756 0.800 0.500 1.544 13.0 

Hard Random 

Forest 

0.953 0.782 0.800 0.771 1.0 2.281 

 

4.1.3 Feature Ranking Stability Examples 

Figure 10 demonstrates the feature ranking changes for Random Forest on the Adult Income dataset. The model exhibits 

exceptional stability with a correlation of 0.999 between clean and corrupted feature importance values. All top 10 

features maintain their relative positions with minimal rank changes, confirming the robustness of Random Forest 

explanations for this dataset. 

 
Figure 10: Feature Ranking Changes: Adult Income - Random Forest 
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Figure 11 illustrates the ranking changes for Logistic Regression on the Spambase dataset. Despite the increased feature 

dimensionality, the model maintains a strong correlation of 0.961. The top features show minor position shifts, with most 

critical features remaining within two rank positions of their baseline values. 

 
Figure 11: Feature Ranking Changes: Spambase - Logistic Regression 

 

Figure 12 presents the XGBoost feature rankings for the Breast Cancer dataset. The correlation of 0.900 indicates good 

stability, though some features experience notable rank changes. The worst perimeter and worst texture features maintain 

their top positions, while middle ranking features show greater variability. 

 

 
Figure 12: Feature Ranking Changes: Breast Cancer - XGBoost 

 

4.2 Discussion 

4.2.1 Impact of Dataset Complexity on SHAP Stability 

The experimental results reveal a nuanced relationship between dataset complexity and SHAP stability that challenges 

initial expectations. Contrary to the hypothesis that simpler datasets would uniformly demonstrate higher stability, the 

Medium complexity Adult Income dataset exhibited the highest average Spearman correlations across models (0.978), 

surpassing both Easy (0.943) and Hard (0.939) datasets. This unexpected finding suggests that dataset characteristics 

beyond simple complexity metrics influence explanation stability. 

The Adult Income dataset benefits from well defined demographic and employment features that maintain semantic 

consistency even under corruption. The categorical nature of many features, after encoding, creates discrete decision 

boundaries that prove resilient to Gaussian noise. In contrast, the continuous medical measurements in the Breast Cancer 

dataset and the frequency based features in Spambase data show greater sensitivity to perturbations, despite representing 

ostensibly simpler and more complex classification tasks respectively. 
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4.2.2 Model Architecture Effects on Robustness 

Random Forest consistently demonstrates the highest stability across all datasets, achieving perfect Spearman correlation 

(0.999) on the Adult Income dataset and maintaining correlations above 0.95 for all scenarios. This superior stability 

stems from the ensemble averaging effect, where multiple shallow decision trees vote on feature importance, naturally 

smoothing out the impact of data perturbations. The restriction to single split trees (max depth = 1) further enhances 

stability by preventing complex interaction effects that might amplify under corruption. 

Logistic Regression exhibits dataset dependent stability patterns, performing exceptionally well on structured data but 

showing increased sensitivity on high dimensional datasets. The linear nature of the model makes it robust to small 

perturbations that preserve relative feature relationships, explaining its perfect Top 5 overlap on the Easy dataset. 

However, the Hard dataset with 57 features introduces multicollinearity challenges that amplify under corruption, 

resulting in higher mean rank changes. 

XGBoost displays the most variable stability profile, with Spearman correlations ranging from 0.890 to 0.974. The 

boosting mechanism, while effective for prediction, creates sequential dependencies where early trees influence later 

ones. Data corruption disrupts these dependencies, particularly affecting middle importance features that rely on residual 

patterns. The use of stumps partially mitigates this issue but cannot fully eliminate the inherent sensitivity of gradient 

boosting to training data variations. 

 

4.2.3 Implications for Practical Deployment 

The uniformly low overfitting severity across all models validates the effectiveness of aggressive regularization for 

maintaining SHAP stability. Train test gaps below 0.031 ensure that feature importance rankings reflect genuine patterns 

rather than noise artifacts. This finding has critical implications for production systems where model explanations guide 

high stakes decisions. 

The preservation of Top 5 feature overlap above 0.6 for most model dataset combinations indicates that critical features 

remain identifiable despite data quality degradation. This robustness is particularly important for regulatory compliance 

and model auditing, where identifying key decision factors is mandatory. Organizations can confidently deploy SHAP 

explanations knowing that the most influential features will remain consistent even when data collection processes 

introduce moderate noise or incompleteness. 

The correlation between model performance and explanation stability suggests a fundamental trade off. Models achieving 

higher predictive accuracy generally maintain better SHAP stability, but this relationship is moderated by architectural 

choices. Random Forest sacrifices some predictive performance for superior explanation robustness, while XGBoost 

prioritizes accuracy at the cost of increased sensitivity to data perturbations. 

 

4.2.4 Comparison with Previous Research 

These findings extend previous work on explanation stability by quantifying the specific impact of simultaneous noise 

injection and sample removal. While Dombrowski et al. (2019) examined geometric transformations on image data and 

Ghorbani et al. (2019) focused on adversarial perturbations designed to maximally disrupt explanations, this research 

demonstrates that combined corruption mechanisms create compound effects that vary by model architecture. The 

observed Spearman correlations exceeding 0.89 across all configurations substantially surpass the stability levels reported 

by Alvarez-Melis and Jaakkola (2018), who found correlation coefficients as low as 0.3 for neural network explanations 

under minor input perturbations. This improvement likely stems from the optimized regularization parameters that 

specifically minimize overfitting, supporting the theoretical framework proposed by Fel et al. (2021) linking smoother 

decision boundaries to more stable explanations. 

The dataset complexity paradox, where Medium difficulty data shows highest stability, has not been previously 

documented. This finding contrasts with Hooker et al. (2019), who suggested a monotonic relationship between task 

complexity and explanation fragility in their analysis of neural networks on corrupted image datasets. The superior 

performance of Random Forest aligns with Zhou et al. (2022), who demonstrated that ensemble methods provide more 

robust attributions through averaging effects, though their work did not examine the interaction between dataset 

characteristics and model architecture. This research uniquely reveals that feature semantics and data structure play 

equally important roles in maintaining stable explanations, extending beyond the architectural considerations emphasized 

in previous studies. 

 

5. CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

This study investigated the robustness of SHAP feature importance rankings when machine learning models are subjected 

to controlled data corruption, addressing a critical gap in understanding explanation stability under degraded data 

conditions. The research employed three datasets of varying complexity across medical, financial, and text classification 
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domains to evaluate how Logistic Regression, XGBoost, and Random Forest maintain explanation consistency when 

training data experiences both sample removal and Gaussian noise injection. 

The experimental findings demonstrate that properly regularized models maintain substantial SHAP stability even under 

data corruption scenarios. Spearman correlations exceeding 0.89 across all model dataset combinations confirm that 

feature importance rankings exhibit resilience to moderate data quality degradation. The preservation of Top 5 feature 

overlap above 0.6 in most scenarios indicates that critical decision factors remain identifiable despite perturbations, 

supporting the reliability of SHAP explanations for model interpretation in production environments. 

Random Forest emerged as the most stable architecture, achieving near perfect correlation on the Adult Income dataset 

and maintaining consistently high stability metrics across all complexity levels. This superior performance stems from 

the ensemble averaging mechanism that naturally dampens the impact of data perturbations. Logistic Regression 

demonstrated excellent stability on structured datasets but showed increased sensitivity with growing feature 

dimensionality. XGBoost exhibited the most variable stability profile, reflecting the sequential dependencies inherent in 

gradient boosting that amplify corruption effects. 

The unexpected finding that Medium complexity data yielded the highest average stability challenges conventional 

assumptions about the relationship between problem difficulty and explanation robustness. This result suggests that 

feature semantics and data structure characteristics exert stronger influence on stability than raw complexity metrics. The 

Adult Income dataset, with its well defined categorical features and clear decision boundaries, proved more resilient to 

corruption than either the continuous medical measurements or the frequency based text features. 

The uniformly low overfitting severity achieved through optimal regularization validates the importance of proper model 

configuration for maintaining explanation stability. Train test gaps below 0.031 across all experiments ensure that SHAP 

values reflect genuine patterns rather than noise artifacts, establishing a foundation for trustworthy model explanations. 

This work contributes empirical evidence that SHAP based feature importance can provide reliable insights even when 

data quality cannot be guaranteed, addressing a fundamental concern for deploying interpretable machine learning in real 

world applications. 

 

5.2 Recommendations 

5.2.1 Practical Implementation Guidelines 

Organizations deploying SHAP explanations in production systems should prioritize Random Forest models when 

explanation stability is paramount, particularly in regulatory environments where consistent feature attribution is 

required. The minimal performance trade off observed in this study justifies selecting Random Forest over gradient 

boosting methods when explanation reliability outweighs marginal accuracy improvements. 

Model configuration should emphasize aggressive regularization to minimize overfitting, with specific parameters 

adjusted based on dataset characteristics. For datasets with fewer than 50 features, restricting tree depth to single splits 

provides optimal stability without significant performance degradation. Higher dimensional datasets benefit from 

increased minimum sample requirements for node splitting, with values of 20 for splitting and 10 for leaf nodes proving 

effective across diverse domains. 

Implementation of data quality monitoring systems becomes essential for maintaining explanation reliability. 

Organizations should establish thresholds for acceptable data corruption levels, using the 5% sample loss and 0.1 standard 

deviation noise benchmarks from this study as reference points. When data quality metrics exceed these thresholds, model 

retraining with updated regularization parameters may be necessary to maintain stability. 

 

5.2.2 Model Selection Strategies 

The selection of appropriate algorithms should consider both the dataset domain and the relative importance of prediction 

accuracy versus explanation stability. For financial and demographic datasets with mixed categorical and numerical 

features, all three algorithms demonstrate acceptable stability, allowing selection based on performance requirements. 

Medical and scientific datasets with continuous measurements benefit from Random Forest or strongly regularized 

Logistic Regression to maintain consistent feature rankings. 

Text classification and high dimensional datasets require careful consideration of the stability performance trade off. 

While XGBoost achieves superior predictive accuracy, the increased variability in feature rankings may complicate 

interpretation for stakeholders. Organizations should conduct domain specific stability assessments using the 

methodology presented in this study before finalizing model selection. 

 

5.2.3 Future Research Directions 

Investigation of SHAP stability under adversarial perturbations represents a critical next step for understanding 

explanation robustness. Deliberately crafted corruptions designed to maximize feature ranking changes would establish 

worst case stability bounds and inform defensive strategies for high stakes applications. 
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Extension of the stability analysis to multiclass classification and regression tasks would broaden the applicability of 

these findings. The interaction between class imbalance, corruption patterns, and explanation stability requires systematic 

investigation across diverse problem types. 

Development of theoretical frameworks linking dataset characteristics, model architecture, and expected stability would 

enable practitioners to predict explanation robustness before deployment. Mathematical models that quantify the 

relationship between regularization strength and stability metrics could guide hyperparameter selection specifically for 

interpretability objectives. 

Temporal stability analysis examining how explanations evolve as models undergo incremental updates with streaming 

data would address concerns in continuous learning systems. Understanding the conditions under which feature 

importance rankings remain consistent across model versions is essential for maintaining stakeholder trust in automated 

decision systems. 

Investigation of local explanation stability at the individual prediction level would complement the global feature 

importance analysis presented here. Quantifying how instance specific SHAP values respond to data perturbations would 

provide insights for applications requiring case by case interpretability. 

 

5.2.4 Methodological Enhancements 

Future studies should explore corruption mechanisms beyond Gaussian noise and random sampling, including systematic 

biases, measurement errors, and domain specific degradation patterns. Real world data quality issues often exhibit 

structure that differs from the uniform perturbations examined here. 

Comparative analysis of SHAP stability against other explanation methods such as LIME, permutation importance, and 

gradient based attribution would establish relative robustness across the interpretability landscape. Understanding which 

explanation techniques maintain consistency under corruption would guide selection for specific applications. 

Integration of stability metrics into model selection pipelines, treating explanation robustness as an explicit optimization 

objective alongside predictive performance, would formalize the interpretability consideration in machine learning 

workflows. Multi objective optimization frameworks could identify Pareto optimal configurations balancing accuracy, 

interpretability, and stability. 

The development of standardized benchmarks for explanation stability, similar to existing performance benchmarks, 

would facilitate systematic comparison across methods and domains. Establishing reference datasets with controlled 

corruption patterns would enable reproducible evaluation of new interpretability techniques. 
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