

Impact Factor 8.311

Refereed iournal

Vol. 12, Issue 10, October 2025

DOI: 10.17148/IARJSET.2025.121001

Some Results on a New Subclass of *p*-Valent Functions

Entisar El-Yagubi

Gharyan University, Mathematical Department, Faculty of Science, Gharyan, Libya

Abstract: The theory of *p*-valent functions is an important subject in the geometric function theory. Recently, many researchers have shown great interests in the study of *p*-valent functions. The aim of this paper is to investigate several results concerning the subordination of multivalent functions in the open unit disc \mathbb{U} ; which are associated with derivative operator $\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)$.

Keywords: analytic functions, multivalent functions, differential operator, subordination.

I. INTRODUCTION

Let $\mathcal{H}(\mathbb{U})$ denote the class of analytic functions in the open unit disc $\mathbb{U} = \{z : z \in \mathbb{C}, |z| < 1\}$, and let $\mathcal{H}[a,p]$ be the subclass of $\mathcal{H}(\mathbb{U})$ of the form

$$f(z) = a + a_p z^n + a_{p+1} z^{p+1} + \cdots$$
, $(z \in \mathbb{U}, p \in \mathbb{N})$.

Let \mathcal{A}_p be the subclass of $\mathcal{H}(\mathbb{U})$ of the form

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n, \quad (z \in \mathbb{U}, p \in \mathbb{N}).$$
 (1.1)

For f(z) and g(z) are analytic in \mathbb{U} , we say that f is subordinate to g if there exists an analytic function ω in \mathbb{U} , with $\omega(0)=0$ and $|\omega(z)|<1$ such that $f(z)=g(\omega(z)), z\in\mathbb{U}$. We denote this subordination by f(z) < g(z). If g(z) is univalent in \mathbb{U} , then the subordination is equivalent to f(0)=g(0) and $f(\mathbb{U})\subset g(\mathbb{U})$.

Definition 1.1. For a function $f \in \mathcal{A}_p$ given by (1.1), we define the derivative operator by $\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}f(z)$

$$\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z) = z^p + \sum_{n=p+1}^{\infty} \left(\frac{n}{n}\right)^{\alpha} \left[\beta(n-p)(\lambda-\delta) + p\right]^k a_n z^n, \quad (z \in \mathbb{U}), \tag{1.2}$$

where $\delta \ge 0$, $\beta > 0$, $\lambda > 0$, $\delta \ne \lambda$, k, $\alpha \in \mathbb{N}_0 = \{0,1,2,...\}$ and $p \in \mathbb{N}$.

Remark 1.1. It should be remarked that the differential operator $\mathcal{D}_{\delta,\beta,\mathfrak{K},p}^{k,\alpha}f(z)$ is a generalization of many operators considered earlier. Let us see some of the examples:

For $\beta = \lambda = p = 1$ and $\alpha = \delta = 0$, we get the operator introduced by Sălăgean [5].

For $\lambda = p = 1$ and $\alpha = \delta = 0$, we get the generalized Sălăgean derivative operator introduced by Al-Oboudi [4].

For p = 1 and $\alpha = 0$, we obtain the operator introduced by Darus and Ibrahim [6].

The following Lemmas will be required in our investigation:

Lemma 1.1. (see [11]) Let q(z) be convex univalent in the unit disc U and let $\psi \in \mathbb{C}$ and $\gamma \in \mathbb{C} - \{0\}$ with

$$\Re\{1+\frac{zq''(z)}{q'(z)}+\frac{\psi}{\gamma}\}>0.$$

If p(z) is analytic in U and $\psi p(z) + \gamma z p'(z) < \psi q(z) + \gamma z q'(z)$, then p(z) < q(z), $(z \in U)$ and q is the best dominant.

Lemma 1.2. (see [8]) Let q(z) be univalent in the unit disc U and θ and ϕ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$ when $w \in q(U)$.

$$Q(z) := zq'(z)\phi(q(z)), \text{ and } h(z) := \theta(q(z)) + Q(z).$$

International Advanced Research Journal in Science, Engineering and Technology Impact Factor 8.311 Refered journal Vol. 12, Issue 10, October 2025

DOI: 10.17148/IARJSET.2025.121001

Suppose that Q(z) is starlike univalent in U, and $\Re\{\frac{zh'(z)}{Q(z)}\} > 0$ for $z \in U$. If the subordination $\theta(p(z)) + zp'(z)\phi(p(z)) < \theta(q(z)) + zq'(z)\phi(q(z))$ holds then p(z) < q(z), $(z \in U)$ and q(z) is the best dominant.

Lemma 1.3. (see [9]) Let q(z) be convex univalent in the unit disc U and $\gamma \in \mathbb{C}$. Further, assume that $\Re\{\gamma\} > 0$. If $p(z) \in \mathcal{H}[q(0),1] \cap Q$, with $p(z) + \gamma z p'(z)$ is univalent in U, then $q(z) + \gamma z q'(z) < p(z) + \gamma z p'(z)$ implies q(z) < p(z) and q(z) is the best subordinant.

Lemma 1.4. (see [10]) Let q(z) be convex univalent in the unit disc U and ϑ and φ be analytic in a domain D containing q(U). Suppose that $zq'(z)\varphi(q(z))$ is starlike univalent in U, and $\Re\{\frac{\vartheta'(q(z))}{\varphi(q(z))}\} > 0$ for $z \in U$. If $p(z) \in \mathcal{H}[q(0),1] \cap Q$, with $p(U) \subseteq D$ and $\vartheta(p(z)) + zp'(z)\varphi(z)$ is univalent in U and $\vartheta(q(z)) + zq'(z)\varphi(q(z)) < \vartheta(p(z)) + zp'(z)\varphi(p(z))$ then q(z) < p(z), $(z \in U)$ and q(z) is the best subordinant.

II. MAIN RESULTS

We study the subordination for functions containing derivative operator, and followed by some sandwich results.

Theorem 2.1. Let $f, g \in \mathcal{A}_p$, $(\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g(z))^{\Omega}$ be a convex univalent in the unit disc U and $\Omega, \gamma > 0$, such that $(\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g(z))^{\Omega}$ be analytic in U satisfies

$$\Re\{1+\frac{z\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g''(z)}{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g'(z)}+(\Omega-1)\frac{z\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g(z)}+\frac{1}{\gamma}\}>0,$$

$$\mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}g(z)\neq 0, \mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}g'(z)\neq 0,\ z\in \mathit{U}.$$

If $(\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z))^{\Omega} \in \mathcal{A}_p$ and the subordination

$$(\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z))^{\Omega}[1+\Omega\gamma\frac{z\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z)}] < (\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g(z))^{\Omega}[1+\Omega\gamma\frac{z\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g(z)}],$$

holds then

$$(\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z))^{\Omega} \prec (\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g(z))^{\Omega}$$

and $(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{\Omega}$ is the best dominant.

Proof. Our aim is to apply Lemma 1.1. Setting

$$p(z) := (\mathcal{D}^{k,\alpha}_{\delta,\beta,\ell,p} f(z))^{\Omega} \quad and \quad q(z) := (\mathcal{D}^{k,\alpha}_{\delta,\beta,\ell,p} g(z))^{\Omega}.$$

It suffices to prove

$$\Re\{1 + \frac{zq''(z)}{q'(z)} + \frac{1}{\gamma}\} > 0, \quad \gamma \neq 0.$$

By the assumptions of the theorem, and using the following

$$(\mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}f(z))'=\mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}f'(z),\ (\mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}g(z))'=\mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}g'(z),$$

and

$$(\mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}g'(z))'=\mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}g''(z).$$

Then
$$\Re\left\{1 + \frac{zq''(z)}{a'(z)} + \frac{1}{\nu}\right\}$$

Impact Factor 8.311

Refereed § Peer-reviewed & Refereed journal

Vol. 12, Issue 10, October 2025

DOI: 10.17148/IARJSET.2025.121001

$$=\Re\{1+\frac{z\Omega(\mathcal{D}_{\delta,\beta,\tilde{\Lambda},p}^{k,\alpha}g(z))^{\Omega}[\frac{\mathcal{D}_{\delta,\beta,\tilde{\Lambda},p}^{k,\alpha}g''(z)}{\mathcal{D}_{\delta,\beta,\tilde{\Lambda},p}^{k,\alpha}g(z)}-(\frac{\mathcal{D}_{\delta,\beta,\tilde{\Lambda},p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\tilde{\Lambda},p}^{k,\alpha}g(z)})^{2}+\Omega(\frac{\mathcal{D}_{\delta,\beta,\tilde{\Lambda},p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\tilde{\Lambda},p}^{k,\alpha}g(z)})^{2}]}{\Omega(\mathcal{D}_{\delta,\beta,\tilde{\Lambda},p}^{k,\alpha}g(z))^{\Omega}(\frac{\mathcal{D}_{\delta,\beta,\tilde{\Lambda},p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\tilde{\Lambda},p}^{k,\alpha}g(z)})}$$

$$=\Re\{1+\frac{\frac{z\mathcal{D}_{\delta,\beta,\Delta,p}^{k,\alpha}g^{\prime\prime}(z)}{\mathcal{D}_{\delta,\beta,\Delta,p}^{k,\alpha}g^{\prime}(z)}-z(\frac{\mathcal{D}_{\delta,\beta,\Delta,p}^{k,\alpha}g^{\prime}(z)}{\mathcal{D}_{\delta,\beta,\Delta,p}^{k,\alpha}g^{\prime}(z)})^2+\Omega z(\frac{\mathcal{D}_{\delta,\beta,\Delta,p}^{k,\alpha}g^{\prime}(z)}{\mathcal{D}_{\delta,\beta,\Delta,p}^{k,\alpha}g^{\prime}(z)})^2}{(\frac{\mathcal{D}_{\delta,\beta,\Delta,p}^{k,\alpha}g^{\prime}(z)}{\mathcal{D}_{\delta,\beta,\Delta,p}^{k,\alpha}g^{\prime}(z)})}+\frac{1}{\gamma}\}$$

$$=\Re\{1+\frac{z\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g^{\prime\prime}(z)}{\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g^{\prime}(z)}+(\varOmega-1)\frac{z\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g^{\prime}(z)}{\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g(z)}+\frac{1}{\gamma}\}$$
> 0

Now we show that

$$p(z) + \gamma z p'(z) < q(z) + \gamma z q'(z)$$

where $\Re{\{\overline{\gamma}\}} > 0$ and $\psi = 1$. By using the assumption of the theorem we have

$$\begin{split} p(z) + \gamma z p'(z) &= (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} f(z))^{\Omega} + \gamma z [(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} f(z))^{\Omega}]' \\ &= (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} f(z))^{\Omega} + \gamma z [\Omega \mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} (f(z))^{\Omega-1} \mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} f'(z)] \\ &= (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} f(z))^{\Omega} + \gamma \Omega [(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} f(z))^{\Omega} \frac{z \mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} f'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} f(z)}] \\ &= (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} f(z))^{\Omega} [1 + \Omega \gamma \frac{z \mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} f'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} f(z)}] \\ &< (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} g(z))^{\Omega} [1 + \Omega \gamma \frac{z \mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha} g'(z)}] \\ &= q(z) + \gamma z q'(z). \end{split}$$

Thus in view of Lemma 1.1, p(z) < q(z) and q is the best dominant.

Taking $q(z) = \frac{1+Az}{1+Bz}$ in Theorem 2.1, we have the following corollary.

Corollary 2.1. Let q(z) be a convex univalent in the unit disc U and $1 \le B < A \le 1$, $\Omega, \gamma > 0$, such that $(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{\Omega}$ be analytic in U satisfies

$$\Re\{1+\frac{z\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g^{\prime\prime}(z)}{\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g^{\prime}(z)}+(\Omega-1)\frac{z\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g^{\prime}(z)}{\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g^{\prime}(z)}+\frac{1}{\gamma}\}>0,$$

$$\mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}g(z)\neq 0, \mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}g'(z)\neq 0,\ z\in \mathit{U}.$$

If $(\mathcal{D}_{\delta,\beta,\ell,p}^{k,\alpha}f(z))^{\Omega} \in \mathcal{A}_p$ and the subordination

$$(\mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}f(z))^{\Omega}[1+\Omega\gamma^{\frac{z\mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}f'(z)}{\mathcal{D}^{k,\alpha}_{\delta,\delta,\delta}f(z)}}] < \frac{1+Az}{1+Bz} + \gamma z\frac{(A-B)}{(1+Bz)^2},$$

holds then

$$(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z))^{\Omega} < \frac{1+Az}{1+Bz}$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

Further taking A = 1, B = -1 in Corollary 2.1, we state an interesting result in the following corollary.

DOI: 10.17148/IARJSET.2025.121001

Corollary 2.2. Let q(z) be a convex univalent in the unit disc U and $\Omega, \gamma > 0$, such that $(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{\Omega}$ be analytic in U satisfies

$$\Re\{1+\frac{z\mathcal{D}_{\delta,\beta,\hat{\lambda},p}^{k,\alpha}g^{\prime\prime}(z)}{\mathcal{D}_{\delta,\beta,\hat{\lambda},p}^{k,\alpha}g^{\prime}(z)}+(\Omega-1)\frac{z\mathcal{D}_{\delta,\beta,\hat{\lambda},p}^{k,\alpha}g^{\prime}(z)}{\mathcal{D}_{\delta,\beta,\hat{\lambda},p}^{k,\alpha}g^{\prime}(z)}+\frac{1}{\gamma}\}>0,$$

$$\mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}g(z)\neq 0, \mathcal{D}^{k,\alpha}_{\delta,\beta,\delta,p}g'(z)\neq 0,\ z\in \mathit{U}.$$

If $(\mathcal{D}_{\delta,\beta,\ell,p}^{k,\alpha}f(z))^{\Omega}\in\mathcal{A}_{p}$ and the subordination

$$(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z))^{\Omega}\left[1+\Omega\gamma\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)}\right] < \frac{1+z}{1-z} + \frac{2\gamma z}{(1-z)^2},$$

holds then

$$(\mathcal{D}_{\delta,\beta,\hat{\Lambda},p}^{k,\alpha}f(z))^{\Omega} < \frac{1+z}{1-z}$$

and $\frac{1+z}{1-z}$ is the best dominant.

Theorem 2.2. Let $f,g \in \mathcal{A}_p$ and $z[(\frac{\mathcal{D}_{\delta,\beta,\delta,p}^{k,a}g(z)}{z^p})^{\mu}]'$ be starlike univalent function in U. Assume that

$$\rho(z) = \frac{z \mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha} g'(z)}{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha} g(z)} - p, \quad (z \in U),$$

such that

$$\Re\{\frac{\frac{zp_{\delta,\beta,\kappa,p}^{k,\alpha}g''(z)}{z_{\delta,\beta,\kappa,p}^{k,\alpha}g'(z)}-(\rho(z)+p)]+p}{\rho(z)}+\mu\rho(z)+2\}>0,\ (z\in U).$$

If $(\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}f(z)}{z^p})^{\mu} \in \mathcal{A}_p$ and the subordination

$$(\frac{\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}f(z)}{z})^{\mu}\{1+\mu(\frac{z\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}f(z)}-p)\} < (\frac{\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g(z)}{z^{p}})^{\mu}\{1+\mu(\frac{z\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g(z)}-p)\}$$

holds then

$$(\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}f(z)}{z^p})^{\mu} < (\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g(z)}{z^p})^{\mu}, \ \mu \geq 1,$$

and $(\frac{\mathcal{D}_{\delta,\beta,\mathcal{L}p}^{k,\alpha}g(z)}{z^p})^{\mu}$ is the best dominant.

Proof. Our aim is to apply Lemma 1.2. Setting

$$p(z) := \left(\frac{\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}f(z)}{-n}\right)^{\mu} \text{ and } q(z) := \left(\frac{\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}g(z)}{-n}\right)^{\mu}.$$

Then we obtain

$$\begin{split} q'(z) &= \mu(\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}{z^p})^{\mu-1}[\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{z^p} - \frac{p\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}{z^{p+1}}] \\ &= \mu(\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}{z^p})^{\mu}[\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)} - \frac{p}{z}] \\ &= \mu q(z)[\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)} - \frac{p}{z}] \end{split}$$

and

$$\begin{split} q''(z) &= \mu\{q(z) \big(\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g''(z) - (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z))^{2}}{(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{2}} + \frac{p}{z^{2}} \big) \\ &+ \mu q'(z) \big(\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)} - \frac{p}{z} \big) \} \\ &= \mu\{q(z) \big[\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)} - (\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)})^{2} + \frac{p}{z^{2}} \big] + (\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\delta,\Lambda,p}^{k,\alpha}g(z)} - \frac{p}{z}) q'(z) \}. \end{split}$$

DOI: 10.17148/IARJSET.2025.121001

By letting

$$\theta(\omega) := \omega$$
 and $\phi(\omega) := 1$,

it is clear that $\theta(z)$, $\phi(z)$ are analytic in \mathbb{C} . Also, we consider

$$Q(z) := zq'(z)\phi(z) = zq'(z),$$

$$h(z) := \theta(q(z)) + Q(z) = q(z) + zq'(z)$$

implies

$$h'(z) = 2q'(z) + zq''(z).$$

By the assumptions of the theorem, we find that Q(z) is starlike univalent in U and that

$$\Re{\frac{zh'(z)}{Q(z)}} = \Re{2 + \frac{zq''(z)}{q'(z)}}$$

$$=\Re\{\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g''(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}-z(\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)})^2+\frac{p}{z}+\mu z(\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}-\frac{p}{z})^2}{\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}-\frac{p}{z}}+2\}$$

$$=\Re\{\frac{\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}[\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g''(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}-\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}]+\frac{p}{z}}{\frac{1}{z}}(\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}-p)}+\mu(\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}-p)+2\}$$

$$=\Re\{\frac{\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}[\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g''(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}-\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}]+p}{(\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}-p)}+\mu(\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}-p)+2\}$$

$$= \Re\left\{\frac{\frac{zD_{\delta,\beta,\lambda,p}^{k,\alpha}g^{\prime\prime}(z)}{z^{k,\alpha}_{\delta,\beta,\lambda,p}g^{\prime}(z)} - (\rho(z)+p)] + p}{\rho(z)} + \mu\rho(z) + 2\right\}$$

> 0.

Now we proceed to prove

$$p(z) + zp'(z) \prec q(z) + zq'(z).$$

A computation shows that

$$\begin{split} p(z) + z p'(z) &= (\frac{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z)}{z^p})^{\mu} + z [(\frac{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z)}{z^p})^{\mu}]' \\ &= (\frac{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z)}{z^p})^{\mu} \{1 + \mu (\frac{z\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z)} - p)\} \end{split}$$

Impact Factor 8.311

Refereed journal

Vol. 12, Issue 10, October 2025

DOI: 10.17148/IARJSET.2025.121001

$$< \left(\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}{z}\right)^{\mu} \left\{1 + \mu \left(\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)} - p\right)\right\}$$

$$= g(z) + zg'(z)$$

Thus in view of Lemma 1.2, p(z) < q(z) and q is the best dominant.

Theorem 2.3. Let $f, g \in \mathcal{A}_p$, $(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{\Omega}$ be convex univalent in U and $(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z))^{\Omega} \in \mathcal{H}[0,1] \cap Q$. Assume that $(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z))^{\Omega}[1+\gamma\Omega\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)}]$ is univalent in U where $\Omega,\gamma\in\mathbb{C},\Re\{\gamma\}>0$. If $(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z))^{\Omega}\in\mathcal{A}_p$ and the subordination

$$(\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g(z))^{\Omega}[1+\Omega\gamma\frac{z\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g(z)}] < (\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z))^{\Omega}[1+\Omega\gamma\frac{z\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z)}],$$

holds then

$$(\mathcal{D}_{\delta,\beta,\delta,n}^{k,\alpha}g(z))^{\Omega} \prec (\mathcal{D}_{\delta,\beta,\delta,n}^{k,\alpha}f(z))^{\Omega}$$

and $(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{\Omega}$ is the best subordinant.

Proof. Our aim is to apply Lemma 1.3. Assuming that

$$p(z) := (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z))^{\Omega}$$
 and $q(z) := (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{\Omega}$.

$$\begin{split} q(z) + \gamma z q'(z) &= (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{\Omega} + \gamma z [(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{\Omega}]' \\ &= (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{\Omega} + \gamma z [\Omega(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{\Omega-1}.(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z))] \\ &= (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z))^{\Omega} [1 + \Omega \gamma \frac{z \mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}] \\ &< (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z))^{\Omega} [1 + \Omega \gamma \frac{z \mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)}] \\ &= p(z) + \gamma z p'(z). \end{split}$$

Hence in view of Lemma 1.3, q(z) < p(z) and q(z) is the best subordinant.

Theorem 2.4. Let $f,g \in \mathcal{A}_p$ and $(\frac{\mathcal{D}_{\delta,\beta,\mathcal{L},p}^{k,\alpha}g(z)}{z^p})^{\mu}$ be convex univalent in U. Let the following assumptions satisfy:

(i)
$$z[(\frac{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z)}{z^p})^{\mu}]'$$
 is starlike univalent function in U ,

$$(ii) \quad (\frac{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z)}{z^p})^{\mu} \left\{ 1 + \mu \left(\frac{z\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z)} - p \right) \right\} \text{ is univalent in } U,$$

$$(iii) \ (\frac{\mathcal{D}_{\delta,\beta,\mathcal{L}p}^{k,\alpha}f(z)}{z^p})^{\mu} \in \mathcal{H}[0,1] \cap Q.$$

If $\left(\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}f(z)}{z^p}\right)^{\mu} \in \mathcal{A}_p$ and the subordination

$$(\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}{z^p})^{\mu}\{1+\mu(\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}-p)\} < (\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)}{z^p})^{\mu}\{1+\mu(\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)}-p)\}$$

holds then

$$(\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g(z)}{z^p})^{\mu}<(\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}f(z)}{z^p})^{\mu},\ \mu>1,$$

and $\left(\frac{\mathcal{D}_{\delta,\beta,\lambda,p}^{k,\alpha}f(z)}{z^p}\right)^{\mu}$ is the best subordinant.

DOI: 10.17148/IARJSET.2025.121001

Proof. Our aim is to apply Lemma 1.4. Letting

$$p(z) := \left(\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}f(z)}{z^p}\right)^{\mu} \text{ and } q(z) := \left(\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g(z)}{z^p}\right)^{\mu}.$$

By taking

$$\vartheta(\omega) := \omega \quad and \quad \varphi(\omega) := 1,$$

it can easily observed that $\vartheta(z)$, $\varphi(z)$ are analytic in \mathbb{C} . Thus

$$\Re\{\frac{\vartheta'(q(z))}{\varphi(q(z))}\} = 1 > 0.$$

Now we must show that

$$q(z) + zq'(z) < p(z) + zp'(z)$$
.

A computation shows that

$$\begin{split} q(z) + z q'(z) &= (\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}{z^{p}})^{\mu} + z [(\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}{z^{p}})^{\mu}]' \\ &= (\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g(z)}{z^{p}})^{\mu} \{1 + \mu (\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g'(z)}{\mathcal{D}_{\lambda_{1},\lambda_{2},p,\alpha}^{m,b}g(z)} - p)\} \\ &< (\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)}{z^{p}})^{\mu} \{1 + \mu (\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)} - p)\} \\ &= p(z) + zp'(z) \end{split}$$

Thus in view of Lemma 1.4, q(z) < p(z) and p is the best subordinant.

Combining Theorem 2.1 and Theorem 2.3 we get the following sandwich theorem:

Theorem 2.5. Let f, g_1 , $g_2 \in \mathcal{A}_p$ and let $(\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g_1(z))^{\Omega}$, $(\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g_2(z))^{\Omega}$ be convex univalent functions in U satisfy

$$\Re\{1+\frac{z\mathcal{D}_{\delta,\beta,\ell,p}^{k,\alpha}g_{2}''(z)}{\mathcal{D}_{\delta,\beta,\ell,p}^{k,\alpha}g_{2}'(z)}+(\Omega-1)\frac{z\mathcal{D}_{\delta,\beta,\ell,p}^{k,\alpha}g_{2}'(z)}{\mathcal{D}_{\delta,\beta,\ell,p}^{k,\alpha}g_{2}(z)}+\frac{1}{\gamma}\}>0.$$

If

$$(i) \ (\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z))^{\Omega} \in \mathcal{H}[0,1] \cap Q$$

(ii)
$$(\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z))^{\Omega}[1+\Omega\gamma\frac{z\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z)}]$$
 is univalent in U

and satisfies the subordination

$$\begin{split} (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_{1}(z))^{\Omega} \big[1 + \Omega \gamma \frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_{1}'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_{1}(z)} \big] & \prec (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z))^{\Omega} \big[1 + \Omega \gamma \frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)} \big] \\ & \prec (\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_{2}(z))^{\Omega} \big[1 + \Omega \gamma \frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_{2}'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_{2}(z)} \big], \end{split}$$

where $\Omega > 0$, $\gamma \in \mathbb{C}$ with $\Re{\{\gamma\}} > 0$. Then

$$(\mathcal{D}_{\delta,\beta,\Lambda,n}^{k,\alpha}g_1(z))^{\Omega} < (\mathcal{D}_{\delta,\beta,\Lambda,n}^{k,\alpha}f(z))^{\Omega} < (\mathcal{D}_{\delta,\beta,\Lambda,n}^{k,\alpha}g_2(z))^{\Omega}, \ \Omega > 1,$$

such that $(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_1(z))^{\Omega}$ is the best subordinant and $(\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_2(z))^{\Omega}$ is the best dominant.

Impact Factor 8.311

Refereed & Refereed journal

Vol. 12, Issue 10, October 2025

DOI: 10.17148/IARJSET.2025.121001

Proof. Simultaneously applying the techniques of the proof of Theorem 2.1 and Theorem 2.3, we obtain the required

Combining Theorem 2.2 and Theorem 2.4 we get the following sandwich theorem:

Theorem 2.6. Let f, g_1 , $g_2 \in \mathcal{A}_p$ and let $(\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_1(z)}{z^p})^{\mu}$ be convex univalent functions in U. Assume that $\rho(z) := \frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_1(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_1(z)} - p, \quad (z \in U)$

$$\rho(z) := \frac{z \mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha} g'(z)}{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha} g(z)} - p, \quad (z \in U)$$

such that

$$\Re\{\frac{\frac{z^{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}}g_{2}''(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}g_{2}'(z)}-(\rho(z)+p)]+p}{\varrho(z)} + \mu\rho(z)+2\} > 0, \ (z \in U).$$

and

$$(i) \ \ z[(\frac{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g_2(z)}{z^p})^{\mu}]',z[\left(\frac{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g_1(z)}{z^p})^{\mu}\right]' \ are \ starlike \ univalent \ functions \ in \ U$$

$$(ii) \quad (\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)}{z^p})^{\mu}\left\{1+\mu\left(\frac{z\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)}-p\right)\right\} \ is \ univalent \ in \ U \ and$$

$$(iii) \left(\frac{\mathcal{D}_{\delta,\beta,\Lambda,p}^{k,\alpha}f(z)}{z^p}\right)^{\mu} \in \mathcal{H}[0,1] \cap Q.$$

If $\left(\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}f(z)}{\sigma^p}\right)^{\mu} \in \mathcal{A}_p$ and the subordination

$$(\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g_{1}(z)}{z^{p}})^{\mu}\{1+\mu(\frac{z\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g_{1}'(z)}{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g_{1}(z)}-p)\} \\ < (\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}f(z)}{z^{p}})^{\mu}\{1+\mu(\frac{z\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}f'(z)}{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}f(z)}-p)\} \\ < (\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g_{2}(z)}{z^{p}})^{\mu}\{1+\mu(\frac{z\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g_{2}'(z)}{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g_{2}(z)}-p)\}$$

holds then

$$(\frac{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g_1(z)}{z^p})^{\mu}<(\frac{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}f(z)}{z^p})^{\mu}<(\frac{\mathcal{D}_{\delta,\beta,\delta,p}^{k,\alpha}g_2(z)}{z^p})^{\mu},\ \mu\geq 1,$$

and $(\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g_1(z)}{\sigma^n})^{\mu}$, $(\frac{\mathcal{D}_{\delta,\beta,\zeta,p}^{k,\alpha}g_2(z)}{\sigma^n})^{\mu}$ are respectively the best dominant and the best subordinant.

Proof. By using the same techniques, as in the proof of Theorem 2.2 and Theorem 2.4, the required result is obtained.

III. CONCLUSION

we study a new subclass of p-valent function by using the subordination concept between this function and a generalised derivative operator in the open unit disc.

REFERENCES

- A. Cátás, "On certain class of p-valent functions defined by a new multiplier transformations", in *Proceedings* [1]. Book of the International Symposium G. F. T. A., Istanbul Kultur University, Istanbul, Turkey, pp. 241-250, 2007.
- [2]. B. A. Uralegaddi and C. Somanatha, "Certain classes of univalent functions", In. H. M. Srivastava and S. Owa (eds.), Current Topics in Analytic Function Theory, pp. 371-374, 1992.
- [3]. E. El-Yagubi and M. Darus, "On certain classes of fractional p-valent analytic functions", Izvestiya journal, vol. 11, pp. 28-38, 2015.
- [4]. F. M. Al-Oboudi, "On univalent functions defined by a generalized Salagean operator", Int. J. Math. Math. Sci., no. 25-28, pp. 1429-1436, 2004.
- G. S. Salagean, "Subclasses of univalent functions", in Complex analysis-fifth Romanian-Finnish seminar, Part 1 [5].

IARJSET

ISSN (O) 2393-8021, ISSN (P) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.311

Refereed journal

Vol. 12, Issue 10, October 2025

DOI: 10.17148/IARJSET.2025.121001

- (Bucharest, 1981), pp. 362-372, Lecture Notes in Math., 1013, Springer, Berlin.
- [6]. M. Darus and R.W. Ibrahim, "On subclasses for generalized operators of complex order", *Far East J. Math. Sci.*, vol. 33, pp. 299-308, 2009.
- [7]. S. Kumar, H. Taneja and V. Ravichandran, "Classes multivalent functions defined by dziok-srivastava linear operator and multiplier transformations", *Kyungpook Mathematical Journal*, vol. 46, pp. 97-109, 2006.
- [8]. S. S. Miller and P. T. Mocanu, "Differential Subordinations", *Monographs and Textbooks in Pure and Applied Mathematics*, Marcel Dekker Inc., New York, NY, USA, vol. 225, 2000.
- [9]. S. S. Miller and P. T. Mocanu, "Subordinants of differential superordinations", *Complex Variables, Theory Appl.*, vol. 84, no. 10, pp. 815-826, 2003.
- [10]. T. Bulboaca, "Classes of first-order differential superordinations", *Demonstration Mathematica*, vol. 35, pp. 287-292, 2002.
- [11]. T. N. Shanmugam and V. Ravichangran and S. Sivasubramanian, "Differential sandwich theorems for some subclasses of analytic functions", *The Australian Journal of Mathematical Analysis and Applications*, vol. 3, pp. 1-11, 2006.