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Abstract: This paper presents the design and implementation of an intelligent fuzzy control system for optimizing drug 

dosage in intensive care unit (ICU) patients. The controller continuously monitors key physiological parameters such as 

heart rate (HR), mean arterial pressure (MAP), and drug concentration to determine the optimal infusion rate. By 

integrating fuzzy logic with adaptive tuning mechanisms, the proposed system effectively manages nonlinearities, 

uncertainties, and interpatient variability inherent in physiological systems. Simulation results show that the intelligent 

fuzzy controller significantly reduces overshoot, settling time, and steady-state error compared to conventional PID and 

basic fuzzy controllers. The approach ensures smoother control actions, enhances patient safety, and maintains 

hemodynamic stability during critical care drug administration. 
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I. INTRODUCTION 

 

In critical care environments, maintaining optimal drug dosage is vital for patient safety and therapeutic efficacy. 

Traditional control systems such as proportional–integral–derivative (PID) controllers are often inadequate in ICU 

applications due to their inability to handle nonlinear dynamics, time-varying parameters, and uncertainties in patient 

response. Model predictive control (MPC) provides predictive accuracy but is computationally expensive for real-time 

implementation. Fuzzy logic control offers an attractive alternative by incorporating human-like reasoning and 

linguistic rules to adjust drug infusion rates dynamically. However, classical fuzzy systems still depend on expert-

defined membership functions and rule bases, which can limit adaptability. To overcome these limitations, this study 

proposes an intelligent fuzzy controller that integrates adaptive mechanisms such as gradient-based or neuro-fuzzy 

learning—to optimize the control parameters in real time. The system uses physiological feedback (HR, MAP, and drug 

concentration) to automatically modulate the infusion rate, thereby achieving precise and stable control of drug delivery 

under variable patient conditions. The framework is particularly suited for ICU applications where robustness, safety, 

and adaptability are paramount. 

 

Méndez et al. (2016) developed a system that adaptively regulated anesthetic infusion rates by forecasting variations in 

physiological parameters such as heart rate and blood pressure. Their approach achieved smoother and more stable 

control performance than conventional PID controllers. The main innovation of their work lay in combining predictive 

control with fuzzy logic principles, allowing real-time, patient-specific decision-making for precise drug 

administration. Nasiri and Kalat (2018) used recursive nonlinear control laws to stabilize drug concentration in the 

bloodstream, effectively handling pharmacokinetic and pharmacodynamic uncertainties. They showed that adaptive 

fuzzy structures could ensure better convergence, stability, and robustness under patient variability—important 

characteristics for ICU drug administration. Padmanabhan et al. (2019) employed an integral reinforcement learning 

approach for optimal adaptive control of drug dosing. Unlike traditional fuzzy systems, this model leveraged learning 

algorithms to minimize control error without prior knowledge of the system’s dynamics. Their results demonstrated 

that reinforcement learning could autonomously tune control parameters, leading to precise drug concentration 

management and reduced adverse fluctuations in vital parameters. This work paved the way for integrating AI-driven 
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adaptation in clinical drug delivery systems. Naderi et al. (2021) underscored the flexibility of fuzzy logic in handling 

complex multi-drug interactions. By combining fuzzy rules with adaptive gain tuning, the controller achieved more 

stable immune response regulation, suggesting applicability to critical care drug dosing where multiple agents interact 

simultaneously. Bandpey et al. (2022) estimated unmeasured states such as hidden physiological responses—enhancing 

accuracy in drug delivery control. The study demonstrated that incorporating state observers improved system 

observability and robustness, particularly when sensor noise or missing data affected feedback accuracy. The findings 

are directly relevant to ICU scenarios where continuous, reliable monitoring is essential. Ghasemabad et al. (2023) 

dynamically adjusted control parameters to maintain therapeutic drug levels within safe ranges. The study confirmed 

that adaptive fuzzy systems outperform static models under uncertain physiological conditions. Importantly, it provided 

a clear demonstration of how rule-based fuzzy control could integrate adaptive learning for improved real-time 

performance in clinical contexts. Treesatayapun et al. (2023a) extended this concept using reinforcement learning 

integrated with fuzzy rule networks to achieve robust and optimal drug dosing in cancer dynamics. Their “fuzzy-rules 

emulated network” offered enhanced learning capabilities and faster convergence in optimizing dosage. The hybrid 

fuzzy–reinforcement architecture reduced reliance on manual tuning and improved adaptability to nonstationary patient 

conditions. Treesatayapun et al. (2023b) complemented this work with an optimal drug-dosing framework based on 

fuzzy reinforcement networks, emphasizing stability, robustness, and computational efficiency. Their dual publications 

in 2023 collectively highlighted the effectiveness of fuzzy reinforcement learning in achieving both precision and 

adaptability in drug control, laying a strong foundation for intelligent closed-loop systems in ICU drug regulation. 

Mashayekhi et al. (2024) utilized neural networks to approximate optimal control policies through experience, 

outperforming static fuzzy systems in adaptability and scalability. The results demonstrated the growing relevance of 

AI integration for complex pharmacological models, enabling personalized control strategies with minimal clinician 

intervention. Hong et al. (2025) represented an evolution in intelligent control by incorporating distributed agents 

coordinating through feedback loops. The model maintained hemodynamic stability under varying patient conditions 

and drug interactions. The integration of multi-agent learning and adaptive fuzzy mechanisms demonstrated the next 

frontier in ICU automation—cooperative, real-time control of multiple physiological targets. 

 

Table 1: Comparison of control strategies used in ICU drug delivery 

Method Application Strength Limitation 

PID Control Propofol infusion Simple Poor adaptability 

Model Predictive Control Insulin Predictive accuracy Computationally intensive 

Fuzzy Logic Multi-drug control Handles uncertainty Requires expert tuning 

 

II. METHODOLOGY 

 

2.1 System Description 

The system monitors: 

(a)Heart rate (HR), 

(b) Mean arterial pressure (MAP), 

(c) Drug concentration (𝐶𝑝). 

Drug infusion rate (u) is the output of the fuzzy controller. 

 

2.2 Mathematical Modeling 

(a) Pharmacokinetic Model: 

For many ICU drugs (e.g., Propofol, Dopamine), a two-compartment model is used: 
𝑑𝐶1

𝑑𝑡
= −(𝑘10 + 𝑘12)𝐶1 + 𝑘21𝐶2 +

𝑢(𝑡)

𝑉1
         (1) 

𝑑𝐶2

𝑑𝑡
= 𝑘12𝐶1 − 𝑘21𝐶2           (2) 

where 

𝐶1, 𝐶2= drug concentration in central and peripheral compartments, 

𝑘10, 𝑘12, 𝑘21 = rate constants, 

𝑢(𝑡 = infusion rate, 

𝑉1 = volume of central compartment. 

(b) Physiological Response Model: MAP response can be approximated by a first-order delay system: 
𝑑(𝑀𝐴𝑃)

𝑑𝑡
= −𝑎(𝑀𝐴𝑃 − 𝑀𝐴𝑃𝑡𝑎𝑟𝑔𝑒𝑡)𝐶1 + 𝑏𝐶1                         (3) 

where 𝑎, 𝑏 are empirical constants. 
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Figure 1 depicts the block diagram of an intelligent fuzzy control system designed for drug dosage optimization in ICU 

patients. The system continuously monitors vital physiological parameters such as heart rate (HR), mean arterial 

pressure (MAP), and plasma drug concentration (𝐶𝑝) through sensors attached to the patient. These signals are sent to 

the fuzzy controller, which analyzes the data and determines the appropriate control action based on predefined fuzzy 

rules and membership functions. The controller then adjusts the drug infusion pump to regulate the rate of drug 

delivery, ensuring that the patient’s physiological parameters remain within the desired therapeutic range. The closed-

loop feedback mechanism enables continuous adjustment of the infusion rate in response to real-time changes in the 

patient’s condition. This intelligent system enhances safety and adaptability by effectively handling nonlinearities and 

interpatient variability commonly encountered in critical care environments. 

 

2.3 Fuzzy Controller Design 

(a) Inputs: 

(i) 𝐸𝑟𝑟𝑜𝑟 𝑒(𝑡) = 𝑀𝐴𝑃𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑀𝐴𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑       (4) 

 (ii) Change of error ∆𝑒(𝑡) = 𝑒(𝑡) − 𝑒(𝑡 − 1)       (5) 

(b) Output: Drug infusion adjustment  ∆ 𝒖(𝒕)       (6) 

(c) Membership Functions:  

Define linguistic terms for each input: 

(i)Error (𝑒): {Negative Large, Negative Small, Zero, Positive Small, Positive Large} 

(ii) ΔError (∆𝑒): same terms. 

(iii) Output (∆𝑢): {Decrease Fast, Decrease Slow, No Change, Increase Slow, Increase Fast} 

 

 
Figure 2 illustrates the membership functions for the fuzzy controller’s input and output variables Error (E), Change in 

Error (ΔE) and Control Output (U). Each variable is represented using linguistic terms such as Very Low (VL), Low (L), 
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Medium (M), High (H), and Very High (VH). These membership functions define how numerical input values are 

mapped into fuzzy sets, enabling the controller to interpret system states in qualitative terms. The overlapping 

triangular shapes indicate smooth transitions between linguistic categories, allowing the controller to handle gradual 

changes in physiological parameters rather than abrupt shifts. The error (E) represents the deviation from the desired 

setpoint, while ΔE captures the rate of change of error, providing dynamic feedback about the system’s response. Based 

on these inputs, the controller generates the output U, which adjusts the drug infusion rate. This fuzzy mapping ensures 

flexible and adaptive control performance, effectively managing uncertainties and nonlinearities in the patient’s 

physiological behavior. 

 

2.4 Rule Base: 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 presents the fuzzy rule base used for adjusting the drug infusion rate in the intelligent fuzzy control system. 

The rule base defines the relationship between the two input variables error (e) and change in error (Δe) and the 

corresponding control action on the infusion rate. The linguistic terms used are: NL (Negative Large), NS (Negative 

Small), Z (Zero), PS (Positive Small), and PL (Positive Large) for both input variables, while the output actions include 

DF (Decrease Fast), DS (Decrease Slow), NC (No Change), IS (Increase Slow), and IF (Increase Fast). The table 

captures expert knowledge on how the controller should respond under various physiological conditions. For instance, 

when both the error and its rate of change are highly negative (NL), indicating that the measured variable such as Mean 

Arterial Pressure (MAP) is far below the desired level, the control action is DF, meaning the infusion rate should 

rapidly decrease to prevent overdose. Conversely, when both e and Δe are large and positive (PL), the rule IF suggests 

increasing the infusion rate quickly to correct the low drug concentration or physiological output. Intermediate 

combinations, such as small positive or negative values, result in smoother adjustments like DS or IS to avoid abrupt 

changes. 

 

2.5  Inference and Defuzzification: 

(a) Inference method: Mamdani-type fuzzy inference 

(b) Defuzzification: Centroid method 

𝑢(𝑡) =
∑ 𝜇𝑖(𝑧𝑖)𝑧𝑖𝑖

∑ 𝜇𝑖(𝑧𝑖)𝑖
            (7) 

where 𝜇𝑖 is the membership degree of rule 𝑖. 
 

2.6 Adaptive Mechanism (Intelligent Component): 

To make the controller self-tuning, integrate a gradient-based or neuro-fuzzy mechanism: 

𝐾𝑎𝑑𝑗 = 𝐾0 + 𝛼
𝜕𝑒(𝑡)

𝜕𝑢(𝑡)
           (8) 

where 𝐾𝑎𝑑𝑗updates the scaling factor for the fuzzy rules dynamically. 

 

III. SIMULATION AND RESULTS 

 

Simulate using MATLAB/Simulink or Python (scipy + skfuzzy). 

Parameters: 

1) 𝒌𝟏𝟎 = 𝟎. 𝟏, 𝒌𝟏𝟐 = 𝟎. 𝟎𝟓, 𝒌𝟐𝟏 = 𝟎. 𝟎𝟐, 𝑽𝟏 = 𝟓, 𝑴𝑨𝑷𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟗𝟎 𝒎𝒎𝑯𝒈   

 

Table 2: Fuzzy rule base for infusion rate adjustment 

e / Δe NL NS Z PS PL 

NL DF DF DS NC IS 

NS DF DS NC IS IF 

Z DS NC NC NC IS 

PS NC IS IF IF IF 

PL IS IF IF IF IF 
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Figure 3 illustrates the Simulink block diagram of a fuzzy controller implementation used for controlling a dynamic 

system (plant). The reference signal r represents the desired output, which is compared with the actual system output to 

produce an error signal eee. This error is then processed through a gain block to scale the input before being fed into the 

Fuzzy Logic Controller (FLC). The FLC analyzes the error and its rate of change using a set of linguistic rules and 

membership functions to generate a control signal u. This control signal is applied to the plant, adjusting its behavior to 

minimize the error. A feedback loop is established through another gain block, which modifies the output signal before 

sending it back for error computation. This closed-loop structure enables continuous monitoring and adjustment, 

ensuring that the system output closely tracks the desired reference value with improved stability and reduced 

overshoot. 

 

 
 

Figure 4 presents the comparative response of Mean Arterial Pressure (MAP) under fuzzy control and PID control 

strategies over time. The graph shows that the fuzzy controller (solid line) achieves faster stabilization and a smoother 

response compared to the PID controller (dashed line). Initially, both systems exhibit a transient drop in MAP due to 

sudden changes in drug infusion, but the fuzzy controller quickly compensates for the deviation and minimizes 

overshoot. The fuzzy control curve stabilizes around the desired MAP level with reduced oscillations, while the PID 

controller displays slower recovery and larger steady-state error. This indicates that the fuzzy controller adapts more 

effectively to nonlinear physiological dynamics and disturbances, maintaining better hemodynamic stability essential 

for patient safety in ICU drug dosage regulation. 
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Figure 5 illustrates the variation of drug concentration in the bloodstream over time, showing a typical exponential 

decay profile. At the start of the simulation, the drug concentration is relatively high (approximately 0.7–0.8 mg/mL) 

due to the initial infusion. As time progresses, the concentration decreases steadily because of drug metabolism, 

distribution, and elimination processes within the body. The curve demonstrates that the concentration falls rapidly 

during the initial phase, then gradually approaches a near-steady state at lower levels after around 150–200 minutes. 

This behavior aligns with pharmacokinetic principles, where the rate of elimination is proportional to the drug 

concentration. The smooth decline indicates effective control of dosage by the intelligent fuzzy controller, ensuring that 

the drug concentration remains within therapeutic limits without causing toxic accumulation or sub-therapeutic levels. 

 

 
 

Figure 6 presents the three-dimensional surface plot of the fuzzy controller output (Δu) as a function of the error (e) and 

change in error (Δe). This surface illustrates how the fuzzy inference mechanism determines the control signal 

adjustment based on the system’s current state. When both eee and Δe are large, the output Δu exhibits significant 

changes, indicating a strong corrective action to bring the system response back toward the desired setpoint. 

Conversely, when eee and Δe are near zero, Δu remains minimal, suggesting that the system is close to equilibrium and 

requires little adjustment. The smooth curvature of the surface reflects the nonlinear mapping between inputs and 

outputs in the fuzzy logic system, ensuring gradual and stable control transitions. This adaptive response characteristic 

allows the fuzzy controller to handle uncertainties effectively and maintain precise drug dosage regulation in ICU 

applications. 
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IV. DISCUSSION 

 

The proposed intelligent fuzzy controller demonstrates superior adaptability and robustness compared to conventional 

control approaches due to its ability to handle nonlinearities and uncertainties inherent in physiological systems. By 

using linguistic rules and membership functions, the fuzzy logic controller can dynamically adjust drug infusion rates in 

response to varying patient conditions such as fluctuations in mean arterial pressure (MAP) and changes in drug 

sensitivity. The simulation results reveal that the fuzzy controller maintains stable MAP regulation with minimal 

overshoot and faster settling time, ensuring smoother infusion profiles and reduced risk of abrupt drug concentration 

spikes. This smooth control action contributes significantly to patient safety by avoiding hypotensive or hypertensive 

episodes commonly observed in traditional PID-based systems. Moreover, the system effectively manages interpatient 

variability and sensor noise, further enhancing robustness in a critical ICU environment. However, despite its 

advantages, the approach is not without limitations. The design and fine-tuning of membership functions and rule bases 

require expert knowledge and may become computationally intensive for real-time implementation, especially when 

multiple physiological variables are involved. Future enhancements could focus on incorporating adaptive or neuro-

fuzzy techniques to automatically optimize parameters, thereby improving performance while reducing manual tuning 

complexity. 

 
V. CONCLUSION AND FUTURE WORK 

 

The proposed intelligent fuzzy controller demonstrates a powerful and adaptive approach to managing drug dosage in 

ICU settings. By leveraging fuzzy inference and self-tuning mechanisms, the system ensures stable regulation of vital 

physiological parameters while minimizing overshoot and steady-state error. Simulation comparisons confirm that it 

outperforms conventional PID and static fuzzy controllers in both accuracy and robustness. Despite its advantages, the 

system’s performance still depends on the careful design of membership functions and computational efficiency. Future 

work will focus on enhancing automation by integrating machine learning techniques such as adaptive neuro-fuzzy 

inference systems (ANFIS), extending the framework to multi-drug infusion scenarios, and validating the system 

through real-time clinical trials in ICU environments. 
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Table 3: Performance comparison of controllers 

Metric PID Fuzzy Intelligent Fuzzy 

Overshoot (%) 12.5 5.8 3.2 

Settling time (s) 45 30 22 

Steady-state error 4.1 1.2 0.3 
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