

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering
INTEGRATE 2025

1

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12201

The Role of Drones in Surveying and Monitoring Construction Site

Mohd Adil Amaan Mansoori¹, Mohd Asrar Mansuri² Sangeeta Choudhary³

Student, Department of Civil Engineering, Geetanjali Institute of Technical studies, Udaipur, India^{1, 2} Associate Professor, Department of Civil Engineering, Geetanjali Institute of Technical studies, Udaipur, India³

Abstract: The construction industry is undergoing rapid technological transformation, and the integration of unmanned aerial vehicles (UAVs), commonly known as drones, has emerged as a revolutionary tool for surveying and monitoring construction sites. Traditional methods of site survey and progress tracking are often time-consuming, labour-intensive, and prone to human error. In contrast, drones equipped with high-resolution cameras, LiDAR sensors, and photogrammetry software enable quick, accurate, and cost-effective data collection across large and complex construction areas. This technology provides real-time, high-quality aerial imagery and 3D models, which enhance decision-making, improve project planning, and minimize delays. Drones play a multifaceted role in construction site management. For surveying, UAVs can generate topographic maps, contour lines, and digital elevation models with high precision, facilitating design verification and earthwork calculations. In monitoring, drones provide real-time tracking of construction progress, resource allocation, and workforce productivity. Regular aerial inspections can identify safety hazards, structural defects, and deviations from design specifications at an early stage, thereby reducing risks and preventing costly rework. Moreover, drones support environmental monitoring by assessing dust emissions, water runoff, and site compliance with sustainability regulations.

Keywords: drones, UAV, construction surveying, photogrammetry, LiDAR, RTK, progress monitoring, volumetrics, BIM, regulations

I. INTRODUCTION

Construction projects are inherently dynamic and spatially complex. Traditional surveying and monitoring (manual surveys, periodic site walks, terrestrial scans) are time-consuming, expensive, and expose personnel to hazards. Drones offer safe, repeatable, and high-resolution remote sensing that can be flown frequently to produce orthomosaics, digital surface/terrain models (DSM/DTM), 3D point clouds, and thermal/visual inspection imagery — enabling near real-time situational awareness for project managers, surveyors, and safety officers. Their adoption has accelerated due to improvements in sensor payloads, positioning (RTK/PPK), and processing software. The integration of drones with Geographic Information Systems (GIS), Building Information Modeling (BIM), and cloud-based project management platforms further enhances collaboration among stakeholders. Data collected by drones can be analyzed through artificial intelligence (AI) and machine learning (ML) algorithms to provide predictive insights, enabling proactive decision-making. In addition, drones significantly reduce the need for manual inspections in hazardous or hard-to-reach areas, improving worker safety. Overall, the adoption of drones in surveying and monitoring construction sites improves accuracy, efficiency, and safety while lowering costs and timelines. This transformative technology is reshaping construction practices, making project execution more transparent, sustainable, and aligned with the evolving demands of smart construction and digital infrastructure.

II. TECHNOLOGIES & DATA WORKFLOWS

2.1 Platform and sensors

- Multirotor and fixed-wing UAVs: Multirotors provide maneuverability for small/complex sites; fixed-wing platforms are efficient for large area surveys.
- RGB photogrammetry: Overlapping images processed with Structure-from-Motion (SfM) generate orthomosaics and dense point clouds.
- **LiDAR payloads:** Provide direct range measurements, penetrate some vegetation, and produce highly accurate point clouds—useful for complex terrains and vertical structures.

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12201

• Thermal and multispectral sensors: Useful for energy audits, material moisture detection, and environmental monitoring.

2.2 Georeferencing & accuracy improvements

- Ground Control Points (GCPs): Traditional method for georeferencing SfM photogrammetry.
- RTK/PPK GNSS: Modern drones with RTK/PPK can achieve centimeter-level absolute positioning without many GCPs, greatly speeding workflows. Studies report horizontal RMSE commonly in the 2–3 cm range with RTK/PPK, and sub-5 cm vertical error under controlled conditions. Accuracy depends on flight planning, GCP distribution (if used), overlap, and processing settings.

2.3 Processing pipelines

Typical pipeline: mission planning \rightarrow data capture (consistent altitude & overlap) \rightarrow raw data transfer \rightarrow photogrammetric/LiDAR processing \rightarrow quality control against check points \rightarrow deliverables (orthomosaic, DSM/DTM, point cloud, volumetrics, difference maps) \rightarrow integration with project systems (BIM, GIS). Automation and cloud processing vendors enable faster turnaround.

III. APPLICATIONS IN CONSTRUCTION

3.1 Topographic and site surveys

Drones rapidly map site topography at high resolution for preconstruction surveys, cut/fill planning, and baseline documentation. They reduce time compared to conventional total station or GNSS roving methods while maintaining acceptable accuracy for many earthwork tasks.

3.2 Volumetric calculations and earthworks monitoring

Frequent drone surveys allow accurate stockpile and earthwork volume estimation and tracking of quantities over time (cut/fill reconciliation). Photogrammetry and LiDAR both provide volumetric outputs; choice depends on required precision and surface complexity. Studies validate UAV-derived volumes against conventional methods showing small errors when adequate control and processing are used.

3.3 Progress monitoring and schedule control

Orthomosaics and 3D models captured periodically enable automated or manual comparison against project schedules and 4D BIM, supporting progress verification, earned-value tracking, and early detection of delays. Regular imagery improves transparency for stakeholders.

3.4 As-built verification and quality control

High-resolution 3D models allow comparison of as-built conditions to design models (BIM) for clash detection, dimensional checks, and quality control — improving handover documentation and reducing rework.

3.5 Safety, inspections, and asset management

Drones inspect hard-to-reach or hazardous elements (towers, facades, scaffolding) without scaffolding or rope access, reducing risk and downtime. Thermal imaging detects hotspots in electrical systems or moisture intrusion.

IV. ACCURACY, VALIDATION, AND LIMITATIONS

4.1 Reported accuracy

Peer-reviewed studies show that, with proper workflows, low-cost UAVs can produce horizontal and vertical accuracies in the order of a few centimeters to a few decimeters depending on sensor, GCP/RTK usage, and processing methods. For example, RTK/PPK enabled workflows frequently achieve 2–3 cm horizontal RMSE in controlled studies; SfM workflows with adequate GCPs also reach similar levels. Validation with independent checkpoints remains best practice.

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025 Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12201

4.2 Sources of error

Key error sources include poor GCP placement, insufficient image overlap, GNSS signal multipath or loss, dynamic construction environments (moving equipment), and processing parameter selection. Vegetation, reflective surfaces, and vertical facades present additional challenges for photogrammetry. LiDAR may perform better in vegetated or complex vertical scenes but comes at higher cost.

V. REGULATORY, SAFETY, AND ETHICAL CONSIDERATIONS

5.1 Regulation & airspace

Drone operations must comply with national aviation regulations. For example, India's Drone Rules (2021, with amendments) and the DGCA's Digital Sky platform regulate registration, UIN, and permissions; operations in certain zones are restricted and subject to permissions. In the U.S., Part 107 governs commercial small UAS operations including operational limits, remote pilot requirements, and waivers for expanded operations. Operators must plan flights to avoid controlled airspace and follow local/no-fly zone rules.

5.2 Site safety and privacy

On the construction site, coordination is required to prevent collisions with cranes and workers; operations over people and vehicles are restricted in many jurisdictions or require mitigations. Privacy, data protection, and community relations must be managed when capturing imagery of populated sites. Recent local restrictions can temporarily ban or limit drone flights in sensitive urban areas — operators must monitor local notices.

VI. IMPLEMENTATION & OPERATIONAL BEST PRACTICES

- **Standardize flight procedures:** consistent altitudes, overlap (≥75% forward/side recommended for SfM in complex sites), nadir and oblique imaging when required.
- Use RTK/PPK or well-distributed GCPs for projects requiring centimeter accuracy.
- Establish QA/QC protocols: independent check points, error reporting (RMSE), and versioning of datasets.
- Integrate with BIM/GIS: align coordinate systems and data formats for seamless comparisons.
- Train personnel and assign responsibilities: remote pilot certification, data processing expertise, and data governance.

Economic & Productivity Impacts

Case studies and industry reports indicate that drone adoption reduces time for topographic surveys and site inspections from days to hours, lowers personnel exposure to hazards, and can reduce surveying/monitoring costs substantially over project lifecycles. The market growth projections suggest increased adoption and falling unit costs, making drone surveying accessible for small- to medium-sized contractors as well as large firms.

Challenges and Barriers to Adoption

- Regulatory complexity and airspace constraints can restrict operations or increase administrative overhead.
- Data management: large volumes of imagery/point clouds require storage, processing power, and standardized workflows.
- Skill gap in surveyors and engineers on UAV mission planning, processing, and interpretation.
- Perception and change management in organizations used to traditional workflows.
- Environmental constraints: weather (wind, rain), dust, and urban canyon effects can degrade data quality.

Future Trends

- Autonomous and beyond-visual-line-of-sight (BVLOS) operations: with regulatory progress and detect-and-avoid systems, routine autonomous inspections will expand. Sensor fusion: integrated LiDAR + photogrammetry + thermal + GNSS will produce richer digital twins.
- Real-time analytics & on-edge processing: enabling faster decision loops on site.
- AI for automated change detection, progress quantification, and defect recognition will reduce manual post-processing.
- Standardization and digital delivery specifications (for as-built models, volumetrics, and inspection reporting) will accelerate procurement and interoperability.

TARJSET

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering
INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12201

Case Example (Industry Illustration)

Vendors and contractors routinely use drone imagery to produce orthomosaics, DSMs, and volumetrics that are processed into 3D maps and volumes using commercial software (e.g., SimActive, Pix4D, Agisoft) and integrated with project controls for progress and risk management. Example case reports show workflows producing timely volume calculations and change detection for earthworks and large civil projects.

VII. CONCLUSION

Drones are reshaping surveying and monitoring on construction sites by delivering faster, safer, and often more cost-effective methods for capturing high-resolution spatial data. When combined with robust georeferencing (RTK/PPK or GCPs), quality control, and integration into BIM/GIS workflows, UAVs provide accuracy suitable for many construction applications including topographic mapping, volumetrics, progress monitoring, and inspections. Challenges related to regulation, data governance, and skills remain, but technological advances and maturing standards make drones a core part of the modern construction digital toolset. With rapid advancements in automation, artificial intelligence, and computer vision, drone technologies are becoming increasingly autonomous and intelligent. Emerging capabilities such as real-time obstacle avoidance, AI-driven defect detection, and automated change detection are enhancing productivity and accuracy further. As regulatory frameworks mature and the cost of drone technology continues to decrease, UAVs are becoming an integral component of digital construction and smart infrastructure management, driving the industry toward greater efficiency, sustainability, and data-driven decision-making.

REFERENCES

- [1]. H. W. Choi et al., "An Overview of Drone Applications in the Construction Industry," Drones, vol. 7, no. 1, MDPI, 2023.
- [2]. I. Elkhrachy, "Accuracy Assessment of Low-Cost Unmanned Aerial Systems (Accuracy of RTK/PPK Workflows)," Measurement: Journal of the International Measurement Confederation, ScienceDirect, 2021.
- [3]. S. Barba, "Accuracy of 3D Photogrammetric Models from UAV," Drones, vol. 3, no. 1, MDPI, 2019.
- [4]. S. Choudhary, M. Hasan, M. Suthar, A. Saraswat, and H. Lashkar, "Design features of eco-friendly home for sustainable development," *Int. J. Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering (IJIREEICE)*, vol. 10, no. 1, pp. 88–92, Jan. 2022, doi: 10.17148/IJIREEICE.2022.10115.
- [5]. S. Choudhary, H. Shrimali, and J. Shrimali, "Techno-Managerial Phases and Challenges in Development and Implementation of Smart City Udaipur," in *Proc. 4th Int. Conf. Emerging Trends in Multi-Disciplinary Research*, 2023. [Online]. Available: https://www.researchgate.net/publication/370402952
- [6]. S. Choudhary, M. Hasan, M. Suthar, A. Saraswat, and H. Lashkar, "Design Features of Eco-Friendly Home for Sustainable Development," *Int. J. Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering*, vol. 10, no. 1, pp. 88–93, 2022.
- [7]. S. Choudhary, H. Shrimali, and J. Shreemali, "Stages and Challenges in Implementation of Smart City Project, Udaipur," *Int. J. Innovative Science and Research Technology (IJISRT)*, vol. 8, no. 5, pp. 2451–2456, 2023.
- [8]. S. Choudhary, S. Choudhary, S. Choudhary, M. Jain, K. Panchal, and Y. Bhardwaj, "Development of Rain Water Harvesting System through National Highway Profiles by Using GIS and Field Survey," SSRN Electronic Journal, 2019, doi: 10.2139/ssrn.3348303.
- [9]. K. Poonia, P. Kansara, and S. Choudhary, "Use of GIS Mapping for Environmental Protection in Rajasthan A Review," *Int. Adv. Res. J. Sci. Eng. Technol. (IARJSET)*, vol. 10, no. 5, pp. 812–814, 2023.
- [10]. Directorate General of Civil Aviation (DGCA), Drone Rules, 2021 and DigitalSky Platform, Government of India, 2021.
- [11]. Federal Aviation Administration (FAA), Small Unmanned Aircraft Systems (Part 107) and Remote Pilot Study Guide, U.S. Department of Transportation, 2021.
- [12]. S. B. Lee et al., "Calculation and Comparison of Earthwork Volume Using UAV Photogrammetry," Sensors, vol. 22, no. 3, 2022.
- [13]. SimActive Inc., "Chasco Construction Case Study Drone Mapping for Construction Monitoring," SimActive Case Study, 2023.
- [14]. UAVCoach, "Drones in Construction: An In-Depth Guide," 2024. [Online]. Available: https://uavcoach.com/drones-in-construction