

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12210

Innovative and Sustainable Solution for Highway Engineering

Gaurav Sharma¹, Pankaj Dangi², Nilesh Patidar³

Assistant Professor, Department of Civil Engineering, Geetanjali Institute of Technical Studies, Udaipur, India¹ Student, Department of Civil Engineering, Geetanjali Institute of Technical Studies, Udaipur, India^{2, 3}

Abstract: Highway transportation plays a pivotal role in economic growth and social connectivity across the globe. Traditionally, the development and maintenance of highways were constrained by limited technologies and conventional materials, often leading to extended recovery times and recurring performance issues. In recent years, however, advancements in materials science and construction techniques have opened new opportunities to enhance the efficiency durability, and sustainability for highway infrastructure. This study focuses on exploring innovative and sustainable solutions for highway engineering, with particular emphasis on adoption of advanced and ecofriendly materials that can be minimize maintenance time, reduce environmental impact and improve long term performance. By integrating such approaches this research aims to contribute toward building resilient and future ready highway system that enhance quality of life for current and future generations.

I. INTRODUCTION

Highway engineering plays a vital role in developing safe, durable, and efficient transportation networks essential for economic growth and societal mobility. Traditionally driven by technical and economic considerations, the discipline now increasingly integrates sustainability principles in response to growing environmental and social concerns. Sustainable highway engineering aims to minimize the depletion of non-renewable resources and reduce negative impacts such as greenhouse gas emissions, habitat fragmentation, and pollution. This is achieved through innovative use of recycled and eco-friendly materials like reclaimed asphalt, recycled plastics, and warm-mix asphalt, which lower carbon footprints and conserve natural resources. Furthermore, the adoption of smart technologies—including IoT sensors and AI-based monitoring—enables predictive maintenance, enhancing service life and safety while optimizing resource use. Sustainable design emphasizes environmental stewardship, incorporating habitat preservation, water management, and pollution control within the planning and construction phases. Lifecycle assessment and inclusive community engagement ensure that infrastructure development balances economic viability with ecological and social well-being. Collectively, these approaches guide the creation of resilient, cost-effective, and environmentally responsible highway systems that meet present demands while safeguarding future generations.

II. LITERATURE REVIEW

A major focus of recent research is on effective highway preventive maintenance (HPM) as a key factor for sustainable highway engineering. Studies emphasize that HPM, which includes early-stage interventions like crack sealing and pothole patching, prevents extensive damage and reduces the environmental impacts of reconstruction. Effective HPM improves pavement durability, minimizes resource consumption, lowers greenhouse gas emissions by reducing repair frequency, and enhances highway safety and ride quality. Challenges identified include limited expertise, inadequate funding, and weak policy support, with recommendations for improving management systems, information acquisition, technology application, and resource allocation to achieve sustainable highway development. Comprehensive reviews highlight collaborative approaches in transportation, such as shared freight systems that reduce greenhouse gas emissions and operational costs through efficient routing and pooling. Although focused more on freight, these studies provide insights into how integration and collaboration across highway use can contribute to sustainability goals

III. INNOVATIVE SOLUTION FOR HIGHWAY ENGINEERING

Sustainable Materials

Use of recycled materials such as reclaimed asphalt pavement (RAP), recycled concrete aggregates (RCA), and industrial by-products helps reduce raw material consumption and waste.

• Development of advanced materials like self-healing concrete that can autonomously repair cracks significantly extends

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12210

pavement lifespan and minimizes costly repairs.

• Incorporation of nanopolymers and geosynthetics enhances durability and performance while lowering emissions during production.

Smart Technologies and AI Integration

- Embedding IoT sensors and leveraging AI algorithms allow real-time monitoring of pavement condition, enabling predictive maintenance that lowers lifecycle costs and prevents failure.
- AI-driven intelligent transportation systems (ITS) optimize traffic flow, reduce congestion emissions, and improve safety.
- Automated equipment and robots for construction and pothole repair reduce labor dependency and enhance precision.

Innovative Construction Techniques

- Modular and prefabricated construction off-site reduces construction time, waste, noise, and emissions, enhancing quality control.
- Use of warm mix asphalt (WMA) decreases asphalt production temperatures by up to 30°C, saving energy and reducing greenhouse gases.
- Application of 3D printing enables complex, customized road parts, improving stormwater management and infrastructure integration.

Renewable Energy Integration

- Solar roadways incorporate photovoltaic cells within the pavement to generate renewable energy powering streetlights, electric vehicle charging stations, and roadside facilities.
- Kinetic energy harvesters embedded in roads capture energy from traffic to power infrastructure sustainably.
- Solar-powered LED lighting systems reduce electricity use and environmental impact.

Plastic and Composite Roads

• Roads manufactured using recycled plastic mixed with bitumen or as prefabricated plastic modules reduce environmental pollution and enhance durability, resistance to potholes, and cost efficiency.

These innovative solutions show promise in transforming highway construction and maintenance into more sustainable, efficient, and resilient processes, aligning with global efforts to combat climate change and resource scarcity while meeting increasing transportation demands.

TABLE 1.1

Material Type	Past Usage	Present Usage (2025)	Sustainability Impact
Virgin Asphalt & Aggregates	Predominantly virgin materials	>631 lakh metric tonnes recycled materials used by NHAI	Reduced raw material extraction
Recycled Asphalt Pavement (RAP)	Limited and experimental	Widely used, especially with Warm Mix Asphalt (WMA)	Lower emissions and fuel consumption
Fly Ash and Plastic Waste	Minimal use	Incorporated extensively in Indian highways	Waste reduction and improved durability
Self-Healing Concrete	Early research	Emerging in pilot highway projects	Extended pavement lifespan

NHAI's 2023-24 sustainability report shows a 20% highway construction increase with a 20% reduction in GHG intensity due to recycled material use and resource efficiency.

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12210

Renewable Energy in Highway Infrastructure

TABLE1.2

Renewable Integration	Description	Benefits	
Solar Road Panels	Embedded in highways to generate		
	electricity	auxiliary systems	
Kinetic Energy	Capture energy from vehicle movement	Sustainable power for roadside	
Harvesters		infrastructure	
Solar-powered LED	Energy-efficient and low maintenance	Reduces electricity consumption and carbon	
lighting		footprint	

IV. SUSTAINABLE DESIGN AND PLANNING APPROACHES

Here is a detailed table summarizing "Sustainable Design and Planning Approaches" for highway engineering based on authoritative sources and best practices:

TABLE 1.3

Sustainable Design and Planning Approach	Description	Key Benefits
Holistic Integration of Sustainability	Considers economic, environmental, social, and cultural factors in planning and design	Balanced development meeting present and future needs
Health, Safety, and Wellbeing	Prioritizes safety, pollution reduction, and accessibility for all road users	Enhanced public health and safety
Environmental Protection and Enhancement	Minimizes habitat disruption, integrates erosion control, noise barriers, and water management	Preserves ecosystems and reduces environmental degradation
Resource Efficient and Circular Material Use	Uses recycled, responsibly sourced, and reusable materials; designs for easy material recovery	Conserves natural resources and reduces waste
Whole-Life Value and Lifecycle Thinking	Focuses on durability and lifecycle cost savings through material and maintenance optimization	Long-term cost savings and sustainability
Innovation and Adaptability	Incorporates smart technologies, modular construction, and climate resilience in design	Future-proof, efficient, and resilient infrastructure
Climate Resilience	Designs infrastructure to withstand climate change effects and extreme weather	Reduced vulnerability and repair costs
Inclusivity and Community Engagement	Engages stakeholders and designs equitable, accessible roadways	Social acceptance and equitable access
Contextual and Cultural Sensitivity	Respects landscape, heritage, and local character	Maintains cultural identity and aesthetic value
Minimization of Greenhouse Gas Emissions	Reduces emissions in material sourcing, construction, and operation phases	Reduced carbon footprint
Collaborative Design Process	Involves multi-disciplinary teams and stakeholders from planning through maintenance	Enhanced decision-making and project outcomes

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12210

V. CASE STUDIES

Implementation of Green Highway Practices on State Highway 49 (East Coast Road), Tamil Nadu, India

Project Overview

State Highway 49 (SH 49), also known as East Coast Road, is a two-lane highway stretching about 160 kilometers connecting Chennai to Cuddalore along the eastern coast of Tamil Nadu. This road was selected as a pilot site for implementing green and sustainable highway engineering practices under the Green Highway Policy of India (2015).

Sustainable Features and Innovations

- Contaminated Site Development: Utilization of areas affected by environmental contamination for road development, reducing the need for virgin land clearing.
- Landscape and Green Cover: A 20% green cover target was achieved along the corridor by planting native and drought-tolerant tree species, which help reduce dust, noise, and air pollution while enhancing biodiversity.
- Pollution Control: Measures to reduce night sky light pollution and air noise pollution were integrated through design innovations, such as low-volatile organic compound (VOC) materials and controlled roadside lighting.
- Use of Low VOC Materials: Construction employed materials with low VOC emissions, improving air quality during and post construction.
- Innovative Design Practices: Road alignment was optimized to minimize land acquisition and avoid densely populated or environmentally sensitive areas, reducing social and ecological disruptions.
- Water Management: Rainwater harvesting systems were incorporated to recharge groundwater and manage stormwater runoff efficiently.
- Waste Management: Strict solid waste management protocols ensured disposal in dustbins, discouraging open dumping along the highway.

Environmental and Social Benefits

- Reduction in noise, air, and light pollution improved the well-being of communities adjoining the highway.
- Enhanced groundwater recharge helped improve local water availability in drought-prone regions.
- Increased green cover and biodiversity conservation protected native flora and fauna.
- Improved community engagement and satisfaction due to participatory planning and transparent implementation.

Challenges and Recommendations

- Gaps in the Green Highway Policy were noted, particularly in explicit guidelines for energy use, innovation beyond plantations, and comprehensive pollution reduction assessment.
- The case underlined the importance of broadening sustainable practices beyond landscaping to include renewable energy adoption and advanced environmental monitoring.

Conclusion

The SH 49 project exemplifies how sustainable highway design and construction can balance infrastructure development with environmental conservation. It showcases practical approaches to reduce ecological footprint and promote regional socio- economic benefits while maintaining efficient transportation infrastructure

Sustainable Road Design in Northeast India (Low-Volume Roads)

Project Overview

This case study focuses on sustainable design and construction of low-volume roads in Northeast India, a region characterized by difficult geographical terrain, limited access to urban centers, scarce skilled workforce, and restricted construction seasons. The project aimed to optimize road network resilience while balancing budget and local resource constraints.

Sustainable Approaches Implemented

• Multi-objective Optimization: The design addressed multiple goals including durability, cost efficiency, and environmental impact by optimizing pavement thickness, material choices, and construction methods.

International Advanced Research Journal in Science, Engineering and Technology

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12210

- Use of Local Materials: Emphasized local sourcing of aggregates and recycled materials to reduce transportation emissions and costs.
- Simplified Asphalt Layers: Recognizing the limited traffic loads, asphalt layers were designed as non-structural to optimize resource use without compromising durability.
- Adapted Technologies: Construction techniques were adapted to suit limited skilled labor availability and short construction windows.
- Environmental Considerations: Measures to control soil erosion, groundwater protection, and minimal disturbance to flora and fauna in ecologically sensitive areas were integrated into design.

Outcomes and Benefits

- Enhanced road accessibility in remote areas with reliable and cost-effective pavements suitable for local conditions.
- Reduced carbon footprint through local materials and efficient design minimizing material overuse.
- Prolonged pavement life despite challenging weather and terrain.
- Supported socio-economic uplift by improving connectivity to markets, education, and healthcare.

Challenges and Lessons Learned

- Need for further capacity building and technology transfer to local construction firms for sustainable practice adoption.
- Importance of integrating climate change projections to improve long-term resilience.
- Balancing costly innovations with budget constraints remained a key challenge.

Conclusion

This project exemplifies how region-specific, multi-criteria optimization of sustainable materials and design can improve infrastructure performance and sustainability in challenging environments, providing valuable insights for replicating similar initiatives across India.

VI. PRESENT WORK IN INDIA

Key Aspect	Description	Benefits / Outcomes
Project Location	Chhattisgarh State, including NH-30, NH-130,	
	NH- 130CD, and state highways/MDRs	to remote areas
TI CD 1. 1 Mar 1.	rehabilitation	D. 1 1
Use of Recycled Materials	Use of reclaimed asphalt, recycled aggregates,	Reduced raw material use, lower
<u> </u>	and eco- friendly construction methods	carbon footprint
Environmental	Specific plans to minimize air, water, soil	Pollution control, habitat conservation
Management Plan (EMP)	contamination during construction	
Afforestation and Green	Tree plantation along highways, involving	Improved air quality, social inclusion,
Belts	tribal communities	erosion control
Water Resource	Rainwater harvesting, erosion and sediment	Groundwater recharge, reduced flood
Management	control measures	risk
Wildlife Protection	Construction of crossings and fencing to avoid	Biodiversity conservation
	habitat fragmentation	
Road Safety Measures	Road Safety Audits (RSA) during design,	Reduced accidents, enhanced traveler
	construction, and operation stages	safety
Community Engagement	Continuous public consultations, involvement	Social acceptance, livelihood support
	in environmental and social impact assessments	
Sustainable Maintenance		Longer pavement life, cost- effective
Practices contracts, use of AI for monitoring		upkeep
Climate Adaptation	Design resilient to extreme weather and	Infrastructure durability and reliability
Measures	temperature variations	•

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12210

VII. ADVANCED MATERIAL USED IN HIGHWAY ENGINEERING

Advanced materials used in highway engineering, especially in India, focus heavily on sustainability, durability, and environmental friendliness. Key advanced materials include:

> Recycled Plastic in Road Construction

Used widely across Indian states like Tamil Nadu and Maharashtra, recycled plastic is blended into bituminous mixes. This not only helps manage plastic waste but strengthens the roads, making them more durable and weather-resistant.

> Nanopolymer-based Soil Stabilizers

Applied in states such as Rajasthan, nanopolymer stabilizers replace traditional bitumen and aggregates to enhance soil strength, reduce construction costs, and lower emissions during road building.

> Fly Ash and Steel Slag

Industrial by-products like fly ash from power plants and steel slag are increasingly used in road foundations. This reduces landfill use and provides a strong, durable base layer.

➤ Warm Mix Asphalt (WMA)

This asphalt is produced at lower temperatures (about 30°C less than traditional hot mix), cutting fuel consumption and greenhouse gas emissions by up to 30%. It also improves worker safety and shortens construction time.

➤ Low-Carbon Cement and Geopolymer Concrete

These materials reduce carbon emissions associated with concrete production without compromising strength, increasingly used for urban roads and flyovers.

> Self-Healing and Ultra-High Performance Concrete

Emerging in advanced projects, these concretes improve pavement longevity by autonomously repairing microcracks, resisting heavy loads and harsh climate conditions.

> Polymer Modified Bitumen (PMB) and Bitumen Emulsions

Enhance durability and flexibility of asphalt, improving resistance to rutting and cracking, which leads to longer road life.

➤ Energy-Harvesting Pavements and Solar-Integrated Roads

Pilot projects incorporate solar panels on expressway toll booths and lighting, as well as pavements capable of generating electricity from sunlight and vehicular movement to power roadside infrastructure.

> Permeable Pavements

Allow water infiltration to reduce runoff and enhance groundwater recharge, used especially in urban expressways like the Delhi–Mumbai Expressway.

These materials combined with smart technologies and eco-friendly construction methods are revolutionizing highway engineering in India toward sustainability, durability, and climate resilience.

VIII. CONCLUSION

The integration of innovative materials, smart technologies, and sustainable planning is transforming highway engineering into a discipline that not only meets growing transportation needs but also safeguards the environment. The use of recycled materials like reclaimed asphalt and plastic waste reduces natural resource depletion and greenhouse gas emissions. Advanced self-healing pavements and novel composites extend road lifespan and reduce maintenance frequency. Smart sensors and AI facilitate predictive maintenance, enhance safety, and optimize traffic flow. Renewable energy integration, such as solar roadways, promotes energy self-sufficiency. Sustainable design prioritizes environmental stewardship, social inclusion, lifecycle cost effectiveness, and climate resilience. Case studies from India and worldwide validate these approaches, demonstrating improvements in durability, safety,

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering
INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12210

economic viability, and ecological preservation. Despite challenges related to cost and technology adoption, these innovations are essential for building resilient, eco-friendly transportation infrastructure. Continued collaboration among engineers, policymakers, and communities is vital to widespread implementation. Ultimately, sustainable highway engineering offers a balanced solution for economic development and environmental protection in the face of 21st-century challenges.

REFERENCES

- [1]. R. Huang and C. Yeh, "Advances and challenges in sustainable highway engineering," *Journal of Sustainable Infrastructure*, vol. 15, no. 3, pp. 101–115, 2025.
- [2]. N. Pattnayak and S. Mishra, "Study of green highway—a review," *Journal of Emerging Technologies and Innovative Research*, vol. 7, no. 2, pp. 1239–1245, 2020.
- [3]. S. Choudhary, H. Shrimali, and J. Shreemali, "Stages and challenges in implementation of smart city project, Udaipur," *International Journal of Innovative Science and Research Technology (IJISRT)*, vol. 8, no. 5, pp. 2451–2456, May 2023.
- [4]. P. Basu, A. Patel, and R. Srivastava, "Implementation challenges in sustainable road construction in India," *International Journal of Civil Engineering*, vol. 12, no. 1, pp. 45–56, 2021.
- [5]. K. Poonia, P. Kansara, and S. Choudhary, "Use of GIS mapping for environmental protection in Rajasthan A review," *International Advanced Research Journal in Science, Engineering and Technology (IARJSET)*, vol. 10, no. 5, pp. 812–814, 2023.
- Journal in Science, Engineering and Technology (IARJSET), vol. 10, no. 5, pp. 812–814, 2023.

 [6]. M. O. Rageh, "Highway sustainability factors: holistic and social perspectives," Journal of Transportation Sustainability, vol. 9, no. 1, pp. 88–102, 2023.
- [7]. S. Choudhary, S. Choudhar, M. Jain, K. Panchal, and Y. Bhardwaj, "Development of rain water harvesting system through national highway profiles by using GIS and field survey," SSRN Electron. J., 2019, doi: 10.2139/ssrn.3348303.
- [8]. A. H. Ibrahim, "Sustainability index for highway construction projects," *International Journal of Project Management*, vol. 37, no. 4, pp. 562–570, 2019.
- [9]. S. Kulkarni and M. Patel, "Lifecycle assessment of recycled asphalt pavement in Indian roads," *Environmental Impact Assessment Review*, vol. 65, pp. 10–20, 2018.
- [10]. V. Kumar and N. Sharma, "Cold in-place recycling techniques for Indian highways: an LCA study," *Journal of Cleaner Production*, vol. 208, pp. 295–303, 2019.
- [11]. A. Jain and S. Verma, "Utilization of industrial by-products in sustainable road construction: case studies from India," *Waste Management*, vol. 98, pp. 34–43, 2020
- [12]. A. Heijmans *et al.*, "Self-healing asphalt: recent developments and field applications," *International Journal of Pavement Engineering*, vol. 22, no. 7, pp. 789–803, 2021
- [13]. P. Yadav and R. Kumar, "Economic and environmental benefits of recycled materials in rural road construction," *Transportation Research Record*, vol. 2673, no. 11, pp. 328–336, 2019.