

# International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

INTEGRATE

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12211

# Building Information Modelling for Large-Scale Infrastructure Projects

# Gaurav Surecha<sup>1</sup>, Aiwant Chandaliya<sup>2</sup>

Student, Department of Civil Engineering, Geetanjali Institute of Technical Studies, Udaipur, India<sup>1</sup>
Assistant Professor, Department of Civil Engineering, Geetanjali Institute of Technical Studies, Udaipur, India<sup>2</sup>

Abstract: Building Information Modelling (BIM) is changing the way big infrastructure projects are planned, designed, built, and managed. It is a digital system that creates a detailed 3D model of a project, showing both its physical layout and functional details. BIM makes it easier for architects, engineers, contractors, and owners to work together, improving communication and reducing mistakes. In projects like highways, bridges, airports, and railways, BIM helps visualize the whole project before construction starts. It can detect clashes, estimate costs, plan schedules, and manage resources efficiently, which saves time and money. Even after construction, BIM helps in operating and maintaining the infrastructure more easily. But it has challenges too, like the need for trained people, proper software, and good coordination among teams. Overall, BIM is not just a design tool—it helps manage the full life of a project, making big infrastructure projects more organized, efficient, and successful for everyone involved.

Keywords: Infrastructure Projects, Collaboration, Project Management, 3d Modelling

### I. INTRODUCTION

In today's rapidly evolving construction industry, the scale and complexity of large infrastructure projects—such as highways, railways, metro systems, bridges, tunnels, airports, and smart cities—are increasing at an unprecedented rate. These projects often involve multiple stakeholders, large budgets, and tight schedules, which make effective planning, coordination, and execution critical to their success. However, traditional construction methods and conventional 2D design approaches frequently lead to significant challenges such as design inconsistencies, coordination errors, project delays, cost overruns, and inefficient communication between multidisciplinary teams. As a result, the need for digital transformation in the construction sector has become more pressing than ever. One of the most powerful innovations driving this transformation is Building Information Modelling (BIM). BIM is not just a 3D modelling tool but a comprehensive process that integrates physical and functional information about a facility into a single, intelligent digital model. It enables stakeholders—including architects, engineers, contractors, and facility managers—to collaborate more effectively throughout all phases of a project's life cycle, from initial design and construction to operation and maintenance. By linking the 3D model with additional dimensions such as time (4D), cost (5D), sustainability (6D), and facility management (7D), BIM provides a multidimensional understanding of the project that enhances decision-making and transparency. Through BIM, design errors and clashes between different building systems—such as structural, mechanical, and electrical components—can be identified and resolved early in the design phase, preventing costly rework during construction. It also improves resource management by enabling more accurate quantity estimation, scheduling, and budgeting. Furthermore, BIM enhances coordination by creating a common data environment where all project information is stored and shared in real time, promoting better communication and collaboration among project teams working in different locations.

The integration of BIM in large infrastructure projects has proven to increase efficiency, reduce waste, and support sustainable construction practices. For example, BIM-based simulations can assess the environmental impact of materials and energy consumption, helping teams design eco-friendlier and more resilient infrastructure. Despite its many advantages, the adoption of BIM also presents challenges such as high implementation costs, lack of skilled professionals, and the need for standardized practices and interoperability among different software platforms. Overall, the application of BIM in large-scale infrastructure projects represents a major step forward for the construction industry. It enables smarter project delivery, enhances productivity and safety, and ensures better asset management throughout the project's life cycle. As governments and private organizations increasingly mandate BIM usage for public works and infrastructure development, it is set to become an essential component of modern construction, driving innovation, sustainability, and long-term project success.

# II. CONCEPT AND PRINCIPLES OF BIM

Building Information Modelling (BIM) is a modern digital process used in the construction industry to create and manage information about a project throughout its entire life cycle. It is more than just a 3D drawing or model — it is a smart digital

# **IARJSET**



# International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

# Geetanjali Institute of Technical Studies (GITS)

#### Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

#### DOI: 10.17148/IARJSET/INTEGRATE.2025.12211

representation that includes both the physical and functional details of every part of the project. BIM allows all the people involved, such as architects, engineers, and contractors, to work on the same model and share updated information in real time. The main principle of BIM is collaboration. Instead of working separately, all teams work together on one shared platform. This helps in reducing errors, saving time, and improving communication.

Another important principle is information management, which means every detail about the project — from design to construction and even maintenance — is stored in one digital model. BIM also follows the principle of visualization, allowing users to clearly see the project in 3D before construction begins.

#### III. NEED FOR BIM IN LARGE INFRASTRUCTURE PROJECTS

Large infrastructure projects such as highways, bridges, tunnels, airports, and railways are very complex and involve many people working together. Traditional construction methods often face problems like poor coordination, design errors, delays, and cost overruns. Because of this, there is a strong need for a modern system that can handle large amounts of data, improve teamwork, and increase accuracy. Building Information Modelling (BIM) helps to solve these problems by providing a single digital platform where all project information is stored and shared. It allows different teams to work together in real time and identify mistakes early, which saves time and money. BIM also helps in visualizing the complete project before construction begins, making it easier to plan and manage resources. In large projects, where even a small error can cause huge losses, BIM ensures better control, faster decision-making, and improved quality. Therefore, BIM has become a necessary tool for managing large and complex infrastructure projects efficiently and effectively.

#### IV. BIM PROCESS AND WORKFLOW

The BIM process follows a systematic workflow that covers all stages of a project, from initial planning to operation and maintenance. It starts with the creation of a digital model that includes all the design information, such as geometry, materials, and spatial relationships. During the design stage, architects and engineers use this model to develop accurate plans and identify possible conflicts or design errors before construction begins. In the construction phase, the BIM model helps contractors plan activities, monitor progress, and manage materials, equipment, and workforce efficiently. The workflow also supports real-time collaboration, where updates made by one team are instantly visible to others, ensuring that everyone works with the latest information. After the construction is completed, the BIM model continues to serve as a valuable source of information for facility management and maintenance activities. This continuous flow of information throughout the life cycle of a project helps improve accuracy, reduce rework, and ensure better coordination among all stakeholders, making the overall project delivery more efficient and organized.

# V. APPLICATIONS OF BIM IN INFRASTRUCTURE PROJECTS

Building Information Modelling (BIM) has a wide range of applications in large infrastructure projects, making it a valuable tool across different stages of project development. In road and highway projects, BIM helps in route alignment, earthwork estimation, and utility management, ensuring better design accuracy and cost control. For bridges and tunnels, BIM allows precise modeling of structural components, load analysis, and clash detection, reducing design errors and construction risks. In railway and metro projects, BIM assists in track alignment, station layout, and coordination between civil, electrical, and mechanical systems. It is also widely used in airports, ports, and water infrastructure projects for planning layouts, managing space, and improving safety. BIM's ability to integrate 3D models with scheduling (4D) and cost estimation (5D) makes it useful for monitoring progress and budgeting during construction. Additionally, BIM supports maintenance and facility management after completion, as the digital model holds all relevant data for future repairs and upgrades. Thus, BIM applications cover the full project life cycle, enhancing coordination, efficiency, and decision-making in complex infrastructure works.

### VI. BENEFITS OF BIM

Building Information Modelling (BIM) offers many benefits that make construction projects more efficient, accurate, and cost-effective. One of the main advantages is improved coordination among architects, engineers, and contractors, as all teams work on a single shared digital model. This reduces communication gaps and helps identify design errors before actual construction begins. BIM also allows better visualization of the project in 3D, helping stakeholders understand the design clearly and make faster, more

#### ISSN (O) 2393-8021, ISSN (P) 2394-1588



# International Advanced Research Journal in Science, Engineering and Technology

**IARJSET** 

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

### Geetanjali Institute of Technical Studies (GITS)

#### Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

#### DOI: 10.17148/IARJSET/INTEGRATE.2025.12211

informed decisions. It improves cost estimation and scheduling by linking the model with time and cost data, which helps control budgets and avoid delays. BIM also reduces material wastage, improves safety on site, and enhances the quality of construction by detecting clashes early. After completion, the same BIM model can be used for operation and maintenance, providing long-term value to project owners. Overall, BIM increases productivity, reduces rework, saves both time and money, and leads to more sustainable and successful infrastructure projects.

#### VII. CHALLENGES IN BIM IMPLEMENTATION

Although Building Information Modelling (BIM) offers many advantages, its implementation in large infrastructure projects also faces several challenges. One of the main challenges is the high initial cost of software, hardware, and training required for effective use of BIM tools. Many organizations, especially smaller firms, find it difficult to afford these expenses. Another major issue is the lack of skilled professionals who can properly use BIM software and manage the digital workflow. Successful BIM implementation also requires strong collaboration between different teams, which can be difficult to achieve when multiple contractors and consultants are involved. In some cases, resistance to change from traditional methods slows down the adoption of BIM. Additionally, issues related to data sharing, standardization, and interoperability between different software platforms can create technical difficulties.

Despite these challenges, awareness, proper training, and government support can help increase BIM adoption and make the construction industry more efficient and technology-driven.

#### VIII. BIM TOOLS AND SOFTWARE

Several specialized software tools are used to support Building Information Modelling (BIM) processes in large infrastructure projects, each serving distinct yet complementary purposes throughout the project life cycle. Among the most widely adopted platforms is Autodesk Revit, primarily used for architectural, structural, and MEP (mechanical, electrical, and plumbing) modelling. Revit enables the creation of highly detailed 3D models that integrate geometry with data, facilitating collaboration between architects, engineers, and contractors. It also supports parametric modelling, which allows users to make design changes easily and automatically update related elements throughout the project. For project coordination and analysis, Autodesk Navisworks plays a critical role.

This tool is mainly used for clash detection, project review, and construction sequencing (4D simulation). By combining models from different disciplines, Navisworks helps identify design conflicts before construction begins, thereby reducing costly on-site errors and rework. It also allows project teams to visualize and simulate construction schedules in real time, improving communication and decision-making. In civil and infrastructure engineering, Autodesk Civil 3D is a preferred tool for the design of roads, highways, railways, drainage systems, and other land development projects. Civil 3D provides intelligent 3D modelling capabilities that support terrain analysis, corridor modelling, and earthwork computations, ensuring that designs meet both geometric and regulatory standards. Similarly, Bentley MicroStation and OpenRoads Designer are popular choices in large-scale transportation and utility projects. Bentley's suite of applications offers robust interoperability, high accuracy, and seamless integration with GIS data, which are essential for infrastructure projects that require extensive geospatial coordination.

For detailed structural modelling, Tekla Structures is a powerful platform widely used in the design and fabrication of steel and reinforced concrete components. Tekla's model-based approach allows for a high level of precision and constructability, supporting direct integration with fabrication machinery and construction workflows. This reduces errors, optimizes material usage, and enhances collaboration between designers, engineers, and contractors.

Beyond 3D modelling, these BIM tools are often linked with 4D scheduling (time) and 5D cost estimation (budget) data, creating an integrated digital representation of the project. This integration enables teams to visualize progress, predict potential issues, and make data-driven decisions throughout the design, construction, and operation phases. Additionally, BIM platforms support Common Data Environments (CDEs) where project information is stored and managed in real time, ensuring that all stakeholders access up-to-date and consistent information. Ultimately, the selection of BIM software depends on project requirements, team expertise, interoperability needs, and budget constraints. When used effectively, these tools greatly enhance coordination, accuracy, and productivity across multidisciplinary teams. They contribute to more sustainable design outcomes, improved project predictability, and reduced lifecycle costs—making BIM an indispensable component of modern infrastructure development.

# IX. CONCLUSION

Building Information Modelling (BIM) has proven to be one of the most effective digital tools in the modern construction industry, especially for large and complex infrastructure projects. It brings together design, planning, construction, and maintenance into one

# **IARJSET**

#### International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering **INTEGRATE 2025** 

# Geetanjali Institute of Technical Studies (GITS)

#### Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

#### DOI: 10.17148/IARJSET/INTEGRATE.2025.12211

connected digital platform. BIM improves communication, accuracy, and coordination among all project participants, helping to reduce errors, delays, and unnecessary costs. It also provides better visualization and decision-making through 3D models and realtime data sharing. Even though there are challenges such as high setup costs, lack of training, and resistance to change, the longterm benefits of BIM are far greater. With proper awareness, education, and government support, the adoption of BIM can continue to grow and reshape the construction industry. Overall, BIM is not just a design tool but a complete process that enhances quality, safety, and sustainability, making it essential for the successful delivery of large infrastructure projects.

# REFERENCES

- AAG. M. Jagadeesh and S. Jagadisan, "Investigation of BIM adoption in India," 2019. [1].
- I. A. Isac and C. K. Anoop, "Analysis of building information modelling and scope of BIM in India," 2019.
- [3]. S. Choudhary, H. Shrimali, and J. Shreemali, "Techno-managerial phases and challenges in development and implementation of Smart City Udaipur," in Proc. 4th Int. Conf. Emerging Trends in Multi-Disciplinary Research, 2023. [Online]. Available: <a href="https://www.researchgate.net/publication/370402952">https://www.researchgate.net/publication/370402952</a>
  K. Poonia, P. Kansara, and S. Choudhary, "Use of GIS mapping for environmental protection in Rajasthan — A review," International Advanced Research
- Journal in Science, Engineering and Technology (IARJSET), vol. 10, no. 5, pp. 812–814, 2023.
- S. Choudhary, M. Hasan, M. Suthar, A. Saraswat, and H. Lashkar, "Design features of eco-friendly home for sustainable development," International [5]. Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering (IJIREEICE), vol. 10, no. 1, pp. 88–93, Jan. 2022.
- [6]. S. Choudhary, H. Shrimali, and J. Shreemali, "Stages and challenges in implementation of smart city project, Udaipur," International Journal of Innovative Science and Research Technology (IJISRT), vol. 8, no. 5, pp. 2451–2456, May 2023.
- S. Choudhary, S. Chouhan, M. Jain, K. Panchal, and Y. Bhardwaj, "Development of rain water harvesting system through national highway profiles by [7]. using GIS and field survey," SSRN Electronic Journal, 2019, doi: 10.2139/ssrn.3348303.
- P. Sharma and S. Gupta, "Applicability of building information modeling (BIM) in Indian built environment sector," 2016.
- N. Akhtar, "BIM Understanding, its drivers and challenges in the Indian construction industry," 2018.
- S. Dhopte and A. Daga, "Exploring the journey of BIM in the Indian AECO industry (2008-2022)," 2022. [10].
- [11]. K. C. Prakash, Y. H. Kumar, and N. N. Kumar, "Assessing the adoption and challenges of building information modelling (BIM) in India's construction sector: A quantitative study," 2025.
- A. Mishra, A. Hasan, and K. N. Jha, "Drivers to BIM adoption in the Indian construction industry," 2023. [12].
- G. Mahajan and P. Narkhede, "Integrating BIM with digital technology trends in the construction industry: Implementation insights for 2023," 2023.
- [14]. A. Kumar, H. Sood, and M. Chatterjee, "Building sustainable construction through the adoption of building information modeling (BIM)," 2025.