

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12212

A Comprehensive Research on Digital Twin Models for Civil Infrastructure: Concepts, Applications, and Future Directions

Gunjan badgujar¹, Lakshita mali², Kumavat Yogesh³

Student, Department of Civil Engineering, Geetanjali Institute of Technical Studies Udaipur, India^{1, 2, 3}

Abstract: As a result of accelerating urbanization and the combined impacts of climate change and aging civil infrastructure, including bridges, roads, tunnels, dams, railways and buildings, these assets are experiencing more stress than ever. Their monitoring and maintaining is therefore getting more complicated. Digital Twin (DT) techniques that link a physical asset to its virtual version through real-time data transfer have arisen as one of the promising tools for SHM, life cycle decision-making and resilience in the three domains. It first explains the approaches for DT generation with the help of sensors and devices like Internet-of-Things (IoT), remote sensing, photogrammetry as well as virtual modelling and data updating strategies. DT can be applied in various domains, such as structural health monitoring, preventive maintenance planification and operation and maintenance phase but also--occasionally-- during the working process of construction or following a disaster.

However, several challenges remain. These include high data and modeling requirements, difficulties in integrating systems such as BIM, GIS, and DT, high computational demands, cost issues, the need for standardization, and a lack of general frameworks—particularly during construction phases. To overcome these issues, researchers recommend developing scalable frameworks, improving model updating methods, combining physics-based and data-driven approaches, enhancing interoperability, and focusing on under-researched areas such as construction and emergency preparedness.

Keywords: Digital Twin, Civil Infrastructure, Structural Health Monitoring, Predictive Maintenance, Internet of Things (IoT), Machine Learning, Risk Assessment, Lifecycle Management, Uncertainty Modeling, Smart Structures

I. INTRODUCTION

Civil infrastructure forms the life-supporting skeleton of modern society that supports transportation, utility, energy, and communications infrastructure. Traditional infrastructure management—periodic inspection, reactive maintenance, and physical testing—has proven to be wasteful, expensive, and unreliable with age and greater usage.

Civil infrastructure networks like highways, bridges, and buildings underpin the economic and social development of a nation. Yet, conventional inspection and maintenance practices tend to be reactive, expensive, and narrow in scope. With Industry 4.0, there has been a shift toward data-driven and predictive asset management. Of these new paradigms, the Digital Twin (DT) has emerged as a valid solution of high potential offering real-time, dynamic representation of physical infrastructure over its life cycle.

Digital Twins (DTs) offer a groundbreaking solution. As virtual replicas of physical systems that are constantly updated with live data, DTs can simulate, monitor, and even control assets throughout their entire lifecycle. In civil engineering, DTs are being used for tasks as varied as structural health monitoring (SHM) and predictive maintenance right through to sustainability scoring and risk assessment. Increasing levels of IoT sensors, cloud computing, and machine learning have further accelerated their adoption. This paper reviews the recent progress on digital twin technologies for civil infrastructure, highlighting recent developments, applications, case studies, and open issues.

II. DIGITAL TWIN CONCEPT AND FRAMEWORK

The structure of a civil infrastructure digital twin is usually made up of five fundamental layers: the physical entity, data achievement, data management, virtual modeling, and service application layers [3]. Data is collected using IoT-equipped sensors integrated into structural elements, with live feedback on strain, temperature, vibration, or load conditions. The data is uploaded to cloud or edge-based platforms for storage, processing, and integration.

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12212

The virtual representation is the computational and analytical duplicate of the physical object that is created using BIM, FEM, or other simulation methods. For instance, Jasiński et al. [4] showed how BIM and FEM integration can be utilized in creating bridge twins that are able to represent structural behavior when subjected to various types of loads. The integration of the cyber-physical world maintains constant synchronization between the actual and virtual worlds, which allows for near-real-time decision-making support.

A general DT architecture for civil infrastructure also features machine learning algorithms for anomaly detection and predictive maintenance. These analytical modules convert raw data into actionable intelligence, facilitating proactive measures that prolong the life of assets and lower operational expenses.

III. USES OF DIGITAL TWINS IN CIVIL INFRASTRUCTURE

• Bridge Management Systems

Bridges are one of the most widely researched applications of DT technology. Mousavi et al. [5] and Gao et al. [6] in their studies brought forth DT frameworks combining SHM with real-time simulation to enable engineers to visualize deteriorating processes and optimize maintenance. The digital twin allows remote inspection and the early discovery of future failures, enhancing public safety and minimizing downtime.

• Road and Transportation Infrastructure

Digital twins are finding their way more and more into road networks to improve traffic management, pavement conditions, and urban mobility. Yan et al. [7] surveyed enabling technologies like 5G, edge computing, and AI-based models that enable real-time vehicle and roadside sensor data fusion. These technologies enable transportation agencies to optimize maintenance cycles and reduce disruptions.

• Smart Cities and Urban Systems

On the city level, Urban Digital Twins (UDTs) model interactions between multiple infrastructures. Zhu et al. (2025) illustrated city-level DTs for urban planning and resilience evaluation with emphasis on the possibility of cross-sectorial coordination among transportation, energy, and water utilities.

• Construction and Asset Lifecycle Management

DTs help in project planning, risk analysis, and construction sequencing. AI-based DTs can model construction procedures, evaluate different scenarios, and maximize resource utilization, resulting in cost and time effectiveness.

In the construction industry, DTs are utilized to optimize energy, space, and emergency management. Cheng et al. [8] noted the combination of BIM and IoT streams for real-time building performance monitoring. Such systems enable predictive maintenance of mechanical and electrical infrastructure and enhance sustainability targets in smart cities.

IV. CHALLENGES

Albeit major progress, some challenges restrain the wide-scale application of digital twins in civil infrastructure:

• Data Interoperability and Standardization:

Existing DT applications are plagued by fractured data models and incompatibility in formats between various software platforms. Open standards are required to facilitate unencumbered data exchange between BIM, GIS, and IoT systems.

• Cybersecurity and Data Privacy:

Since DTs are based on cloud-based data sharing, they are susceptible to cyber-attacks and unapproved access. Proper encryption, verification, and data governance systems are needed.

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12212

High Computational and Financial Expenses:

The development and support of a high-fidelity DT need tremendous investments in sensors, communication infrastructure, and computing resources. This hinders the adoption of the technology by small and medium-sized infrastructure agencies. Model Accuracy and Real-Time Synchronization:

Ongoing calibration between physical and digital systems is still a critical challenge. Small differences in sensor readings or delay in times can lead to erroneous model predictions.

• Shortage of Skilled Talent:

Integration of DT systems requires multidisciplinary talent across structural engineering, data science, and information technology—a talent gap still widespread in most organizations [9].

• Standardization and Governance:

Inadequate single DT standards and certification models restrict cross-platform use. Harmonized protocols demand international cooperation.

• Human-System Interaction:

As emphasized by Mousavi et al. (2024), human-in-the-loop methods provide explanations and acceptance. User-centric design and augmented reality interfaces should be included in future DTs for effective decision support.

• AI Integration and Explainability:

Whereas AI improves forecasting potential, black-box model opacity creates issues of trust and responsibility. Explainable AI (XAI) can enhance clarity.

V. FUTURE DIRECTIONS

- A. Unified Data Standards and Semantic Interoperability: Next-generation research must develop open ontologies that integrate BIM, GIS, and IoT data on a shared schema for plug-and- play DT platforms in infrastructure domains.
- B. Hybrid Cloud–Edge Computing Architectures: Future DTs will exploit distributed computing to deliver real-time capabilities with less latency and greater flexibility for sensor- rich environments.
- C. Integration of Explainable and Physics-Informed AI: Assembling AI with physics-based models will provide more accurate predictions and explanations, making DT decisions scientifically understandable.
- D. Lifecycle Continuity and Circular Economy Integration: DTs that extend throughout the lifecycle from design to decommissioning should be the focus of studies, incorporating performance feedback for sustainable reuse of materials, recycling, and tracking the carbon footprint.
- E. Resilience and Disaster-Response Applications: DTs can emulate hazard events like earthquakes and floods. Future systems must incorporate real-time evaluation of resilience and post-disaster recovery planning.
- F. Human-Centric and Collaborative DT Spaces: According to Industry 5.0 tenets, DTs must incorporate human skills via interactive dashboards, AR/VR visualization, and participatory design processes.
- G. Standardization and Benchmarking Frameworks: Establishing worldwide DT standards for verification, authentication, and performance benchmarking will guarantee model dependability, reproducibility, and inter-project comparability.

VI. CONCLUSION

Digital Twin technology is a game-changer in the design, monitoring, and management of civil infrastructure. Recent research between 2022–2025 has already proven its capacity to increase reliability, safety, and sustainability by real-time monitoring, predictive analysis, and smart decision-making. Yet, mass adoption is held back by interoperability, data quality, and governance issues. As the civil infrastructure shifts towards digital transformation and Industry 5.0 paradigms, next-generation digital twins will migrate from disconnected models to integrated, intelligent ecosystems. They will form the backbone of robust, adaptive, and sustainable infrastructure networks, redefining the world of engineering in the decades to come. Digital twin technology is a cutting-edge approach to lifecycle management of civil infrastructure assets. By integrating physical infrastructures with their digital twins, DTs enable real-time monitoring, pre-emptive maintenance, and smarter decisions. Despite a range of technical and

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering **INTEGRATE 2025**

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12212

operational challenges remaining—e.g., interoperability, cyber security, and cost—continuing developments in IoT, AI, and cloud technologies promise to address these challenges. Future research must be directed towards the development of scalable, interoperable, and smart DT platforms that can enable smart city infrastructure to be sustainable and resilient.

REFERENCES

- [1]. SC. Liu et al., "Literature review of digital twin technologies for civil infrastructure," Automation in Construction, vol. 156, 2023.
- H. Naderi et al., "Digital twinning of civil infrastructures: Current state," Journal of Civil Structural Health Monitoring, 2023. [2].
- M. F. Bado et al., "Digital twin for civil engineering systems," Sensors, vol. 22, no. 9, 2022. [3].
- S. Choudhary, H. Shrimali, and J. Shreemali, "Techno-managerial phases and challenges in development and implementation of Smart City Udaipur," in [4]. Proc. 4th Int. Conf. Emerging Trends in Multi-Disciplinary Research, 2023. [Online]. Available: https://www.researchgate.net/publication/370402952
- K. Poonia, P. Kansara, and S. Choudhary, "Use of GIS mapping for environmental protection in Rajasthan A review," International Advanced Research [5]. Journal in Science, Engineering and Technology (IARJSET), vol. 10, no. 5, pp. 812-814, 2023.
- [6]. S. Choudhary, M. Hasan, M. Suthar, A. Saraswat, and H. Lashkar, "Design features of eco-friendly home for sustainable development," International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering (IJIREEICE), vol. 10, no. 1, pp. 88–93, Jan. 2022.
- S. Choudhary, H. Shrimali, and J. Shreemali, "Stages and challenges in implementation of smart city project, Udaipur," International Journal of [7]. Innovative Science and Research Technology (IJISRT), vol. 8, no. 5, pp. 2451–2456, May 2023.

 M. Jasiński et al., "The concept of creating digital twins of bridges using BIM and FEM," Applied Sciences, vol. 13, no. 10, 2023.
- V. Mousavi et al., "Evolution of digital twin frameworks in bridge management," Remote Sensing, 2024. [9].
- [10].
- Y. Gao *et al.*, "Bridge digital twin for practical bridge operation and management," *Buildings*, vol. 14, no. 1, 2024. Y. Yan *et al.*, "Digital twin enabling technologies for advancing road infrastructure," *Transportation Engineering*, 2024. [11].
- R. Cheng et al., "A review of digital twin applications in civil and building engineering," Buildings, 2023. [12].
- Z. Sun et al., "Approach towards the development of digital twin for intelligent monitoring and maintenance of civil infrastructure," Sensors, 2024. [13].
- S. Kumar and A. Patel, "AI-enhanced digital twin frameworks for smart infrastructure," Journal of Infrastructure Systems, 2025. [14].