

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12230

Assessing the Impact of Vaastu Shastra Compliance in Building Plans on Occupants Healthy, Lifestyle, and Well Being

Honey Kalal¹, Dainik Bhamat², Tanish Soni³

Student, Department of Civil Engineering, Geetanjali Institute of Technical Studies, Udaipur, India¹ Student, Department of Civil Engineering, Geetanjali Institute of Technical Studies, Udaipur, India² Student, Department of Civil Engineering, Geetanjali Institute of Technical Studies, Udaipur, India³

Abstract: Vaastu Shastra, an ancient Indian architectural science, emphasizes the harmonious relationship between human habitation and the natural environment. Rooted in Vedic philosophy, it integrates the five fundamental elements—earth, water, fire, air, and space—to create balanced and health-promoting built environments. In recent decades, as urbanization accelerates and stress-related health concerns rise, both architects and homeowners have shown renewed interest in Vaastu-compliant design, believing it contributes to physical vitality, mental stability, and overall prosperity. This research paper critically examines the relationship between Vaastu Shastra compliance in building plans and its measurable or perceived influence on occupants' health, lifestyle, and well-being. Drawing from literature review, field surveys, and comparative analysis, the study explores how fundamental Vaastu parameters—such as spatial orientation, natural light, ventilation, zoning, and energy flow—affect thermal comfort, indoor air quality, circadian rhythm, and psychological satisfaction. The research also highlights how Vaastu principles align with modern concepts of sustainable architecture and environmental psychology, reinforcing the importance of natural harmony, biophilic design, and spatial balance. Findings indicate that while scientific validation of Vaastu's metaphysical claims remains limited, its practical design recommendations—like optimizing daylight, air movement, and spatial organization—can enhance occupants' comfort and emotional well-being. Therefore, Vaastu Shastra can be seen not only as a cultural tradition but also as an early form of sustainable and human-centered architectural thinking, offering valuable insights for contemporary design practices seeking holistic well-being and environmental harmony

I. INTRODUCTION

1.1 Background

Vaastu Shastra, derived from the Sanskrit words "Vas" (to dwell) and "Shastra" (science), is an ancient Indian treatise that provides guidelines for architectural design aimed at ensuring harmony with nature's five elements—earth, water, fire, air, and space. Traditional Indian architecture extensively relied on these principles to align human dwellings with cosmic energies. In the modern context, rapid urbanization and high-density living have often led to the neglect of traditional design norms. However, a growing awareness of holistic living and sustainable design has revived interest in Vaastu-compliant architecture, not merely as a cultural artifact but as a framework for promoting physical and psychological well-being.

1.2 Research Problem

Despite the popularity of Vaastu Shastra, empirical research assessing its real impact on human health and lifestyle remains limited. Many claims are anecdotal, and scientific validation is often debated. Thus, it is essential to critically analyze whether and how Vaastu principles influence well-being—directly through environmental quality or indirectly through perceived satisfaction.

1.3 Objectives

- To analyze the key principles of Vaastu Shastra relevant to building design.
- To evaluate the impact of Vaastu compliance on occupants' physical health, lifestyle habits, and psychological well-being.
- To compare Vaastu-compliant and non-compliant spaces in terms of environmental comfort and user satisfaction.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12230

To explore the integration of Vaastu principles in contemporary sustainable architecture.

II. LITERATURE REVIEW

- 2.1 Origins and Core Principles of Vaastu Shastra: Vaastu Shastra originated between 6000 BCE and 3000 BCE as part of Vedic architecture. Texts such as *Manasara*, *Mayamata*, and *Brihat Samhita* detail guidelines for spatial arrangement, orientation, and proportion. Central principles include:
 - Orientation: Buildings should face cardinal directions, optimizing sunlight and wind flow.
 - Five Elements (Pancha Mahabhutas): Balancing earth, water, fire, air, and space ensures harmony.
 - Center (Brahmasthan): The central part of the house should remain open or light to allow energy flow.
 - Zoning: Specific activities are assigned to particular directions (e.g., kitchen in southeast, bedrooms in southwest).

2.2 Vaastu and Environmental Psychology

Research in environmental psychology highlights how spatial arrangements affect mood, stress, and behavior. Studies show that **natural light, ventilation, symmetry, and openness**—elements emphasized by Vaastu—can improve mood, circadian rhythm regulation, and indoor air quality. (Ulrich, 1984; Evans & McCoy, 1998)

2.3 Vaastu and Sustainable Design

Modern sustainability frameworks like **LEED**, **BREEAM**, and **GRIHA** emphasize natural ventilation, daylighting, and thermal comfort—concepts consistent with Vaastu Shastra. Thus, integrating Vaastu can potentially enhance both cultural relevance and environmental performance.

2.4 Empirical Studies

While limited, some empirical research supports indirect benefits:

- Sharma & Kumar (2018) found that occupants of Vaastu-aligned homes reported higher satisfaction with light and air quality.
- A 2021 study by Singh et al. linked spatial harmony with reduced stress levels in Vaastu-compliant workplaces. However, controlled scientific studies remain scarce, with most relying on self-reported data.

III. METHODOLOGY

3.1 Research Design

A mixed-method approach was used:

- Quantitative Survey: Conducted among 120 households (60 Vaastu-compliant, 60 non-compliant) in urban India.
- Qualitative Interviews: Conducted with architects and residents to understand perceptions and lived experiences.

3.2 Data Collection

- Parameters: Indoor air quality, natural light exposure, sleep quality, stress levels, satisfaction with layout, and perceived well-being.
- Tools: Standardized questionnaires (WHO-5 Well-Being Index), observation checklists, and semi-structured interviews.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12230

3.3 Data Analysis

Data were analyzed using statistical tools to identify correlations between Vaastu compliance and health/lifestyle outcomes. Qualitative responses were thematically coded.

IV. RESULTS AND DISCUSSION

4.1 Physical Health Indicators

Residents in Vaastu-compliant buildings reported:

- Better sleep patterns (72% vs. 58%).
- Higher satisfaction with natural ventilation and daylight.
- Lower frequency of headaches or respiratory issues (likely due to better airflow and orientation).

4.2 Psychological Well-Being

- 68% of Vaastu-compliant residents reported feeling "calm and positive" in their homes compared to 47% in noncompliant ones.
- Spatial order and symmetry contributed to reduced stress and improved focus.
- Interviewees often attributed peace and prosperity to "positive energy flow," though such perceptions may reflect cultural belief systems.

4.3 Lifestyle and Behavioral Aspects

- Residents of Vaastu-aligned homes reported spending more time in naturally lit areas, using fewer artificial lights during the day.
- Such designs encouraged social interaction in living spaces and better family bonding.

4.4 Integration with Sustainable Design

Many Vaastu principles—orientation toward the east, open courtyards, water elements, and ventilation shafts—align well with passive design strategies that reduce energy consumption and improve indoor environmental quality.

4.5 Limitations

- Subjective self-reports can introduce bias.
- Difficult to isolate Vaastu as the only factor influencing well-being.
- Need for controlled experimental studies with physiological measurements.

V. CONCLUSION

Vaastu Shastra offers valuable insights into spatial harmony, environmental balance, and human comfort. While its metaphysical claims lack rigorous scientific proof, the practical outcomes—better light, air circulation, orientation, and psychological satisfaction—positively affect occupants' health and well-being. Integrating Vaastu principles with modern architectural and sustainability frameworks can yield designs that are both culturally resonant and environmentally responsive.

Recommendations

- Future studies should include physiological measurements (heart rate, cortisol levels) to validate well-being claims.
- Architects should explore hybrid models combining Vaastu Shastra and green building principles.
- Policy frameworks may encourage culturally rooted, sustainable design approaches in urban housing.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12230

REFERENCES

- [1]. G. W. Evans and J. M. McCoy, "Environmental psychology and design," Journal of Environmental Psychology, vol. 18, no. 1, pp. 85–93, 1998.
- [2]. S. Choudhary, H. Shrimali, and J. Shrimali, "Techno-managerial phases and challenges in development and implementation of smart city Udaipur," in *Proc. 4th Int. Conf. Emerging Trends in Multi-Disciplinary Research*, 2023. [Online]. Available: https://www.researchgate.net/publication/370402952
- [3]. K. Poonia, P. Kansara, and S. Choudhary, "Use of GIS mapping for environmental protection in Rajasthan A review," *Int. Adv. Res. J. Sci. Eng. Technol. (IARJSET)*, vol. 10, no. 5, pp. 812–814, 2023.
- [4]. S. Choudhary, M. Hasan, M. Suthar, A. Saraswat, and H. Lashkar, "Design features of eco-friendly home for sustainable development," *Int. J. Innovative Res. Electro. Instrum. Control Eng. (IJIREEICE)*, vol. 10, no. 1, pp. 88–93, Jan. 2022.
- [5]. S. Choudhary, H. Shrimali, and J. Shreemali, "Stages and challenges in implementation of smart city project, Udaipur," *Int. J. Innovative Sci. Res. Technol. (IJISRT)*, vol. 8, no. 5, pp. 2451–2456, May 2023.
- [6]. S. Choudhary, S. Choudhar
- [7]. R. Sharma and P. Kumar, "Impact of Vaastu on residential satisfaction in urban India," *Journal of Building and Environment Studies*, vol. 45, no. 3, pp. 112–121, 2018.
- [8]. A. Singh *et al.*, "Spatial harmony and employee well-being: Revisiting Vaastu in modern workspaces," *Indian Journal of Architecture and Design*, vol. 9, no. 2, pp. 55–63, 2021.
- [9]. R. Ulrich, "View through a window may influence recovery from surgery," Science, vol. 224, no. 4647, pp. 420–421, 1984.
- [10]. GRIHA Council, Green Building Rating System Manual. Government of India, 2020.
- [11]. K. S. Jagadish, Sustainable Traditional Architecture: Indian Context. New Delhi, India: Rupa Publications, 2012.