

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

INTEGRATE

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12236

Integrating Waste Utilization and Advanced Materials: A Review for Sustainable Smart City Infrastructure

Niyati Ameta¹, Niharika Sahu², Preeti Kunwar Rao³, Jitendra Choubisa⁴

Student, Department of Computer Science, Geetanjali Institute of Technical Studies, Udaipur, India¹
Student, Department of Computer Science, Geetanjali Institute of Technical Studies, Udaipur, India²
Student, Department of Computer Science, Geetanjali Institute of Technical Studies, Udaipur, India³
Assistant Professor, Department of Civil Engineering, Geetanjali Institute of Technical Studies, Udaipur, India⁴

Abstract: The transition toward smart cities has intensified the demand for sustainable infrastructure solutions that minimize environmental impacts while ensuring long-term resilience. Recent research has explored diverse strategies ranging from the reutilization of construction waste materials - such as plastic, fly ash, and glass - to the adoption of advanced systems including green roofs and wall assemblies, corrosion-resistant alloys, recycled composites, and self-healing concrete. This review article synthesizes current advancements in these domains, highlighting their technical performance, environmental benefits, and practical challenges in large-scale implementation. Construction waste utilization demonstrates potential in reducing resource extraction and landfill pressure, while green roofs and walls contribute to thermal regulation, biodiversity enhancement, and storm water management. Corrosion-resistant alloys and recycled composites offer durability and lightweight alternatives to conventional materials, whereas self-healing concrete provides an innovative pathway for reducing maintenance costs and extending structural service life. By critically analyzing existing literature, this review identifies synergies among these approaches, underscores gaps in standardization, cost-effectiveness, and scalability, and outlines future research directions. The findings suggest that integrating waste valorization, nature-based solutions, and advanced material technologies represent a comprehensive framework for developing resource-efficient and resilient smart city infrastructure.

Keywords: Sustainable Infrastructure, Smart Cities, Construction Waste Utilization, Green Roofs and Walls, Self-Healing Concrete, Corrosion-Resistant Alloys, Recycled Composites. [11]

I. INTRODUCTION

The rapid growth of urban populations and the emergence of smart cities have created unprecedented demands on infrastructure systems. Smart cities, by definition, aim to integrate digital technologies, sustainable practices, and resilient designs to enhance the quality of urban living. However, achieving these goals requires rethinking conventional construction methods, which are resource-intensive, environmentally burdensome, and often ill-suited for long-term sustainability. Globally, the construction sector accounts for nearly 40% of material consumption and carbon emissions, while also generating significant volumes of waste such as plastic, fly ash, and glass. Without sustainable alternatives, these trends threaten both environmental quality and the resilience of urban systems. [6]

Over the past decade, scholars and practitioners have proposed multiple pathways to address these challenges. Waste-derived materials—including repurposed plastic, fly ash, and recycled glass—have demonstrated potential in substituting virgin construction resources while simultaneously reducing landfill burdens. Parallel to these material innovations, nature-based solutions such as green roofs and wall systems have gained prominence for their ability to regulate microclimates, improve energy efficiency, and enhance biodiversity within dense urban fabrics. Additionally, advances in material science have introduced corrosion-resistant alloys, recycled composite materials, and self-healing concrete, all of which extend service life, reduce maintenance costs, and strengthen resilience under changing climatic conditions. [6]

Despite these advancements, the integration of diverse sustainable materials and systems into smart city infrastructure remains fragmented. Studies often examine single solutions in isolation, overlooking potential synergies and trade-offs. Furthermore, barriers related to cost, scalability, standardization, and long-term performance hinder widespread adoption. A comprehensive review is therefore required to synthesize current knowledge, evaluate practical applications, and identify future research needs. [1]

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12236

This article aims to critically review the role of waste-derived materials, green infrastructure systems, advanced alloys, recycled composites, and self-healing concrete in the development of sustainable infrastructure for smart cities. Specifically, it explores their technical properties, environmental benefits, implementation challenges, and potential complementarities. By consolidating evidence across these domains, the review contributes to a holistic understanding of how innovative material strategies can support the transition toward resource-efficient, resilient, and future-ready urban infrastructure. [14]

II. LITERATURE REVIEW

A. Construction-Waste Materials: Plastic, Fly Ash and Recycled Glass [6]

Plastic waste in construction: Over the last decade interest in incorporating post-consumer and post-industrial plastics into pavement materials and geo-systems has grown rapidly. Reviews and field trials show that plastics can be blended with bituminous binders, used as polymer modifiers, or formed into geo-cells and aggregate substitutes to improve rutting resistance, flexural strength and durability of pavements while diverting plastic from landfills. However, studies report significant variability in performance depending on plastic type (PE, PP, and PET), preprocessing (shredding, melting, chemical treatment), mix design, and test methods. Concerns persist about long-term aging, micro plastic release, standardization of methods, and lifecycle environmental tradeoffs; recent policy and industry reviews call for harmonized protocols and large-scale trials to validate lab results. [6]

B. Fly Ash as A Supplementary Cementitious Material (SCM): Fly ash is one of the most mature waste-to-material routes in cementitious systems. Systematic reviews demonstrate clear benefits: improved workability, reduced water demand, lower heat of hydration, enhanced long-term compressive strength and improved resistance to sulfate attack and alkali-silica reaction when used within appropriate replacement levels. Conversely, high replacement ratios slow early-age strength gain—an important limitation for precast or rapid-turnaround construction—and quality variability (class F vs. class C, carbon content) affects performance and standard compliance. Recent overviews stress the need for adaptive mix designs, quality control frameworks, and blended SCM approaches to maximize fly ash use while meeting structural requirements. [8]

C. Recycled glass in cement and aggregate roles: Reviews of recycled crushed glass (RCG) in cementitious and granular applications show that glass can serve as a partial fine aggregate replacement or, after appropriate alkali-silica mitigation, as a pozzolanic SCM. Performance outcomes are mixed: glass can improve stiffness and thermal insulation in some mixes but may induce ASR or reduce early strength if not processed properly. Reviews emphasize particle size control, alkali mitigation (e.g., blending with fly ash), and application-specific testing (e.g., non-structural vs. structural elements). Opportunities exist for using glass in pavement sub-base, lightweight fills, and insulating panels where mechanical demand is moderate. [8]

D. Green Roofs and Green Wall Systems [11]

A robust body of empirical and review literature evaluates green roofs and living walls for urban resilience. Meta-analyses report consistent benefits for urban microclimate regulation (lowering rooftop and near-surface temperatures), reducing building energy use for cooling, attenuating storm water runoff, and providing biodiversity and amenity values. Performance depends strongly on system type (extensive vs. intensive), substrate depth, plant selection, and climate; maintenance regimes and structural retrofitting costs are recurring implementation barriers. Notably, successful city-scale programs (e.g., Basel's long-term policy experience) demonstrate how regulation, incentives, and context-sensitive design enable wide scale adoption. Remaining research needs include standardized performance metrics, co-benefit quantification (e.g., biodiversity + carbon sequestration), and life-cycle cost analyses that capture long-term maintenance and multi-functional value. [11]

E. Corrosion-Resistant Alloys in Critical Infrastructure [13]

Reviews of corrosion-resistant alloys (CRAs)—including duplex and super-duplex stainless steels, nickel-based alloys (Alloy 625, 825), and coated systems—demonstrate their utility in extending the service life of infrastructure exposed to aggressive environments (marine, industrial, deicing salts). Key advantages are higher strength, improved pitting and crevice corrosion resistance, and reduced maintenance frequency. Comparative reviews highlight tradeoffs: CRAs have higher upfront material costs and can require specialized fabrication/welding procedures, but lifecycle assessments often show cost parity or savings when maintenance and replacement risks are included. Recent literature also discusses material selection frameworks and the need for local environmental characterization (chloride levels, sulfide presence) to guide alloy choice. Standardization and designer awareness remain critical barriers to widespread adoption in civil infrastructure beyond niche/high-risk applications. [13]

F. Recycled Composites and Fiber-Reinforced Polymer (FRP) Materials [14]

Recycled composites encompass mechanically or chemically recycled FRPs, recycled polymer matrices, and hybrid composite systems. Recent systematic reviews document promising mechanical retention (in certain recycling processes FRP retains high tensile strength), applications in non-structural panels, formwork, and reinforcement in low-to-medium demand elements. Recycling techniques (pyrolysis, solvolysis, mechanical grinding) differ in energy intensity and property retention; chemical recycling can

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12236

better preserve fiber properties but is costlier. Reviews emphasize circular-economy pathways: design for disassembly, reuse of CFRP/GFRP in secondary markets, and co-processing in cement kilns. Gaps include scale-up economics, standards for recycled composite use in structural contexts, and durability performance under long-term environmental exposure. [14]

G. Self-Healing Concrete (Autogenously, Polymeric and Biological Approaches) [15]

Self-healing concrete research has expanded rapidly and now spans three broad approaches: (i) autogenously healing via continued hydration and carbonation; (ii) encapsulated polymeric or mineral healing agents released on crack opening; and (iii) biological/self-healing via bacteria or spores that precipitate calcite to seal cracks. Review articles compare efficacy: encapsulation and polymeric methods can reliably seal millimetric cracks but raise concerns about long-term mechanical compatibility; bacterial methods show promising sealing percentages and environmental robustness in lab and pilot tests but face challenges in cost, regulatory acceptance, and lifespan of biological agents. Reviews call for standardized test protocols for healing efficiency, durability evaluation under freeze—thaw, chloride ingress, and for techno-economic assessments bridging lab success to field deployment. [15]

III. APPLICATION IN CIVIL ENGINEERING

A. Construction Waste Materials (Plastic, Fly Ash, Glass) [6]

- **Plastic Waste:** Incorporated into a asphalt mixes for road construction to improve rutting resistance and extend pavement life; also used in interlocking pavers, geo-cells, drainage pipes, and modular construction components. [6]
- Fly Ash: Widely applied as a supplementary cementitious material (SCM) in concrete for buildings, bridges, pavements, and dams; reduces cement consumption, enhances durability, and improves resistance to sulfate and chloride attack. [8]
- Recycled Glass: Used as fine aggregate in concrete, lightweight blocks, tiles, and insulation panels; ground glass pozzolans are applied in high-performance concrete and decorative concrete finishes. [10]

B. Green Roofs and Green Walls [11]

- **Building Applications:** Improve insulation, reduce cooling loads, and mitigate urban heat island effects in high-rise and commercial buildings. [12]
- **Storm water Management:** Applied in civil drainage systems by absorbing and delaying runoff, reducing pressure on municipal storm water networks.
- **Urban Infrastructure:** Integrated into transport hubs, public buildings, and parking structures to improve environmental quality and biodiversity.

C. Corrosion-Resistant Alloys (CRAs) [13]

- Bridges and Coastal Structures: Stainless steel and nickel alloys are employed in reinforcement bars, cables, and anchorage systems in marine environments to resist chloride-induced corrosion.
- Water Infrastructure: CRAs are used in pipelines, desalination plants, and sewage treatment plants due to their resistance to aggressive chemical exposure.
- **High-Risk Infrastructure:** Airports, ports, and tunnels use CRAs in structural and safety-critical components to minimize maintenance and extend service life.

D. Recycled Composite Materials

- **Structural Components:** Fiber-reinforced recycled composites are used in beams, panels, formwork, and bridge decks due to their high strength-to-weight ratio. [14]
- **Retrofitting & Rehabilitation:** Applied as external wraps and laminates to strengthen aging concrete structures and improve seismic resistance.
- **Transportation Infrastructure:** Lightweight recycled composites are explored in pedestrian bridges, noise barriers, and railway sleepers. [14]

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12236

E. Self-Healing Concrete [15]

- **Highway and Pavement Systems:** Reduces maintenance cycles by autonomously sealing cracks, lowering repair costs and traffic disruption.
- **Bridges and Tunnels:** Enhances durability against cracking from mechanical loads, temperature fluctuations, and chloride penetration.
- Water-Retaining Structures: Applied in dams, canals, and sewage systems where crack sealing prevents leakage and water ingress.
- **High-Rise Buildings:** Improves service life of structural concrete, particularly in seismic and high-wind regions where micro-cracking is common.

F. Computer Simulations for better Optimization: [16]

• The practical application of sustainable technologies in civil infrastructure requires parallel evaluation of structural performance. Analytical studies using ETABS software have shown that symmetric building shapes, such as box or H-configurations, perform better under earthquake loading due to reduced story drift and bending moments. Such digital simulations provide valuable insights for integrating sustainable materials into structurally optimized designs.

TABLE I LIMITATIONS AND ADVANTAGES OF SUSTAINABLE INFRASTRUCTURE TECHNOLOGIES [1]

Technology	Advantages	Limitations
1. Utilizing E	Environmental and Economic: • Reduces volume of	Technical and Regulatory: •Inconsistent Quality:
Construction c	construction waste going to landfills, conserving land.	Variability in the properties of waste (especially
Waste (Plastic, •	• Conserves virgin natural resources (e.g., sand,	plastic and glass) can affect the mechanical and
Fly Ash, Glass)	gravel).	durability performance of the resulting product.
	• Fly Ash: Reduces the cement content in concrete,	High Processing Cost: Energy and time required
S	significantly lowering the carbon footprint (CO2	for effective sorting, cleaning, and
e	emissions) of infrastructure. • Can provide a cost-	grinding/melting of waste can negate cost savings.
e	effective material source when local supply chains are	Public Perception: Skepticism regarding the long-
e	established.	term structural integrity and safety of materials
		made from waste.
		Leaching Potential: Risk of chemical leaching
		from certain waste materials if not properly
		processed.
	Urban and Ecological:	Cost and Maintenance:
	• Mitigates Urban Heat Island (UHI): Reduces	High Initial Cost: Significant expense for
	ambient city temperatures through evapotranspiration.	installation, waterproofing, and structural
	• Storm water Management: Absorbs and retains	reinforcement.
	rainwater, reducing runoff and strain on city drainage	Structural Load: Requires specialized structural
	systems.	support due to the weight of the growing medium
	• Energy Efficiency: Provides natural insulation,	(especially saturated soil).
	lowering building heating and cooling energy	Maintenance: Requires regular irrigation,
1	demands. • Ecology: Creates	weeding, and specialized upkeep to ensure plant
	urban habitat, supporting biodiversity.	survival.
	• Air Quality: Filters pollutants and traps dust from the air.	Waterproofing Risk: Potential for roof/wall leakage if the barrier system fails.
	Durability and Resilience:	Economic and Fabrication:
	• Extended Lifespan: Drastically increases the service	High Initial Cost: Significantly more expensive
	life of concrete structures (bridges, tunnels, marine	than traditional carbon steel reinforcement.
	infrastructure) by preventing premature failure from	Specialized Handling: Requires specific
	corrosion. • Reduced	knowledge and care for proper welding and
	Lifecycle Costs: Minimizes the need for expensive,	fabrication processes to maintain corrosion
	disruptive maintenance and repairs over the structure's	resistance.
	lifetime. • Resilience:	

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12236

	Essential for critical infrastructure in aggressive smart city environments (high chlorides, carbonation).	Availability: May be less readily available in local construction markets compared to standard rebar.
4. Recycled Composites (e.g., waste plastic fiber-reinforced polymer)	Material Innovation: • Waste Utilization: Provides a high-value application for complex, hard-to-recycle plastic waste streams. • Durability: Excellent resistance to moisture, rot, pests, and weathering (used for non-structural elements like decking, railings, and street furniture). • Low Maintenance: Does not require painting or sealing and is highly durable.	Technical and Standardization: Mechanical Performance: Typically exhibits lower strength, stiffness, and greater creep (deformation over time) compared to traditional structural materials. Fire Risk: Depending on the plastic content, some composites may have different fire resistance properties than traditional wood or metal. Lack of Standards: Limited standardization and building codes for use in primary structural applications.

V. **FUTURE SCOPE**

Sustainable infrastructure strategies can address India's rapid urbanization and rising construction waste. Utilizing materials like plastic, fly ash, and glass can reduce environmental impact while supporting affordable construction. Green roofs and walls can mitigate urban heat islands, enhance air quality, and manage storm water in densely populated cities. Corrosion-resistant alloys and self-healing concrete can improve durability, especially in coastal regions. Recycled composites and modular construction can accelerate smart city projects and housing initiatives. Future research should focus on cost-effective, locally sourced materials, climate-adapted designs, and large-scale pilot implementations to promote resilient, resource-efficient urban infrastructure in India. [6]

VI. CONCLUSION

Sustainable infrastructure development is critical for the advancement of smart cities, offering solutions to urbanization challenges while reducing environmental impact. The utilization of construction waste materials such as plastic, fly ash, and glass, alongside innovations like green roofs and walls, corrosion-resistant alloys, recycled composites, and self-healing concrete, demonstrates significant potential for enhancing resource efficiency, durability, and environmental performance. Current research indicates promising results, yet further studies are needed to optimize material properties, assess long-term performance, and develop costeffective, scalable solutions. In the context of India, these strategies can support rapid urban expansion, improve resilience against climatic and environmental stresses, and contribute to the creation of sustainable, energy-efficient, and livable urban environments. Collectively, integrating these approaches can pave the way for resilient and environmentally responsible smart city infrastructure.

REFERENCES

- N. Liu, A. Zhao, Harbin Engineering University and Zhengzhou University, "[Existing reference placeholder from uploaded [1]. file]", (as provided by authors).
- B. A. Manu, Department of Construction Management, Bowling Green State University, USA. DOI: [2]. 10.55248/gengpi.5.1224.0215.
- I. Shufrin and E. Pasternak, The University of Western Australia, DOI: 10.3390/app132312891. [3].
- Journal of Sustainable Construction Materials and Technologies, 10(1):108-141, DOI:10.47481/jscmt.1667793. [4].
- [5]. J. Nilimaa, Luleå University of Technology, DOI:10.1016/j.dibe.2023.100177.
- J. Cardoso, "Incorporation of plastic waste into road pavements: a systematic review," Renewable & Sustainable Energy [6]. Reviews, 2023.
- [7]. Use of plastic waste in road construction: A review, WJARR (2020).
- D. K. Nayak, "A review of fly ash concrete and its beneficial use case," 2022. [8].
- G. Li et al., "Fly Ash Application as Supplementary Cementitious Material," Materials, 2022.
- [10]. H. Hamada, "Effect of recycled waste glass on the properties of high-performance concrete," Construction and Building Materials, 2022.
- [11]. E. De Cristo et al., "A Systematic Review of Green Roofs' Thermal and Energy Performance in the Mediterranean Region," Energies, 2025.
- [12]. S. Cheval et al., "A systematic review of urban heat island and heat waves mitigation," 2024.
- [13]. A. Reda, "Review of Material Selection for Corrosion-Resistant Alloy (CRA) pipelines," 2025.

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12236

- [14]. J. Wu, "Recycled Materials in Construction: Trends, Status, and Challenges," Sustainability, 2025.
- [15]. S. K. Adhikary, "Chemical-based self-healing concrete: a review," 2024.
- [16]. J. Choubisa, "Story drift of buildings with various shapes using ETABS software," International Journal of Engineering and Advanced Technology (IJEAT), vol. 9, no. 3S, pp. 17-21, Mar. 2020. doi: 10.35940/ijeat.C1005.0393S20.