

### International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12246

# High Speed Railway Infrastructure

### Rajnikant Suthar<sup>1</sup>, Kavya Jain<sup>2</sup>, Ajay Goyal<sup>3</sup>

Assistant Professor, Department of Civil Engineering, Geetanjali Institute of Technical Studies, Udaipur, India<sup>1</sup>

Student, Department of Civil Engineering, Geetanjali Institute of Technical Studies, Udaipur, India<sup>2,3</sup>

Abstract: High Speed Rail (HSR) infrastructure is emerging as a transformative mode of transport in India, with the Mumbai–Ahmedabad corridor serving as the flagship project. Studies highlight that HSR can significantly reduce travel time, stimulate regional economic integration, and promote sustainable mobility. The major infrastructure components include viaducts, tunnels, slab tracks, dedicated stations, and advanced electrification and signaling systems. Research emphasizes that construction and maintenance of civil works and track systems dominate environmental impacts, requiring robust mitigation strategies. While the capital cost of HSR remains high, economic analyses indicate that benefits in accessibility, agglomeration, and long-term socioeconomic growth justify investment when supported by innovative financing and multimodal integration. The Indian experience underscores that successful HSR deployment depends on integrated planning—linking infrastructure design, environmental management, and regional development— to ensure both technical viability and sustainable outcomes.

**Keywords** High-speed rail, infrastructure, slab track, ballastless track, life-cycle cost, sustainability assessment, predictive maintenance, HSR design.

#### I. INTRODUCTION

High-speed railways (HSR) have rapidly evolved from pioneering demonstrations to extensive national networks that reshape mobility patterns. Originating with Japan's Shinkansen (1964), modern HSR systems now operate across Asia and Europe and are recognized for high throughput, safety records, and relatively low per-passenger emissions. Dedicated HSR lines are typically designed for speeds ≥250 km/h; upgraded lines for 200 km/h or more. The performance of these systems depends fundamentally on engineered infrastructure — track, foundations, structures, power supply and control systems — designed to maintain precise geometry and withstand intense dynamic loading.

This paper provides a technical review and comparative analysis focused on infrastructure options and their implications for cost, performance and sustainability. Emphasis is placed on track system selection (ballasted vs. ballastless/slab) because track form profoundly influences construction practice, maintenance regimes, ride quality, and lifecycle impacts.

#### II. OBJECTIVE AND SCOPE

- A. The objectives of this research paper are to:
- B. Synthesize engineering knowledge on major HSR infrastructure components and design principles.
- C. Compare ballasted and ballastless track systems using technical, economic (LCC) and environmental (LCA) indicators.
- D. Present practical performance and maintenance implications with engineering recommendations.
- E. Identify research gaps and priority directions for future HSR infrastructure development.
- F. Scope is limited to civil and systems engineering aspects of HSR infrastructure. Rolling stock technology, timetable planning, and operational economics beyond asset LCC are discussed only where directly relevant.

#### III. LITERATURE REVIEW

Extensive literature from technical societies, transportation agencies, and academic researchers documents HSR infrastructure experience. Key themes in contemporary research include:

Track form evolution: Traditional ballast-mounted sleepers versus concrete slab systems (CRTS variants, Rheda 2000, Shinkansen slabs). Slab tracks are widely adopted on newly built HSR corridors for improved stiffness and long service life.

Life-Cycle Cost and Environmental Performance: Multiple comparative LCC/LCA studies indicate higher initial costs for slab tracks but lower lifecycle expenditures and carbon footprints due to fewer maintenance and renewal cycles.

Subgrade and geotechnical concerns: Slab systems are more sensitive to differential settlement; hence subgrade design (soil improvement, geosynthetics) is a critical determinant of long-term performance.

Digitalization and maintenance: Sensor arrays, automated track geometry measurement, and AI-enabled predictive maintenance are emerging as enablers of lower costs and higher reliability.

Representative studies informing this review include international reports from technical bodies (UIC), case studies (China,

## **IARJSET**



### International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

### Geetanjali Institute of Technical Studies (GITS)

#### Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12246

Japan, Europe), and comparative research papers published between 2015–2024

#### IV. METHODOLOGY

This study adopts a structured literature synthesis and comparative data consolidation approach:

**Source selection:** Technical reports, peer-reviewed articles, and agency publications addressing HSR track systems, LCC and LCA were collected (representative sources cited).

xisted: initial construction cost (€/km), service life (years), maintenance frequency and cost, and LCA metrics (energy use, CO<sub>2</sub> emissions).

Comparative analysis: A side-by-side comparison was developed, highlighting differences in capital and lifecycle costs, maintenance regimes, and environmental impacts.

**Engineering interpretation**: Findings are contextualized for design and policy decisions, noting key uncertainty drivers and sensitivity to local conditions (traffic volume, soil properties, climate).

Where precise, universally-applicable numerical values were not available, ranges or representative figures are used, with explicit notation that actual project values depend on local conditions.

To avoid confusion, the family name must be written as the last part of each author name (e.g. John A.K. Smith). Each affiliation must include, at the very least, the name of the company and the name of the country where the author is based (e.g. Causal Productions Pty Ltd, Australia).

### V. HSR INFRASTRUCTURE COMPONENTS — ENGINEERING DETAILS

### **Track Systems**

Two main track systems for HSR are considered:

#### **Ballasted Track:**

Components: sleepers (concrete/steel), ballast layer (crushed stone), subballast, formation.

Advantages: lower initial cost, ease of repair, resilience to minor subgrade movements. Limitations: ballast degradation, frequent tamping, geometry deterioration under heavy traffic. Ballastless (Slab) Track:

**Components:** concrete slab (monolithic or modular), resilient fastening systems, direct mounting to a treated subbase. Varieties include CRTS (China), Rheda (Germany), and shinkansen slab systems.

Advantages: high geometric stability, long service life, reduced maintenance interventions, improved ride quality.

Limitations: higher initial cost, sensitivity to subgrade settlement, more complex repair procedures.

### **Subgrade and Earthworks**

HSR subgrade design targets uniform stiffness to limit differential settlement. Techniques include preloading, cement- stabilized layers, geosynthetics, and deep soil mixing. Design must ensure minimal spatial variability in modulus and settlement behavior.

### **Bridges, Viaducts and Tunnels**

HSR corridors often include long viaducts and tunnels. Design considerations include aerodynamic stability (tunnel micropressure waves), dynamic interaction between vehicle and flexible structures, resonance avoidance, and lightweight yet stiff bridge decks (pre-stressed concrete or composite sections).

#### **Electrification and Signalling**

Typical HSR electrification employs 25 kV AC overhead contact systems sized for high peak currents. Advanced signalling (ETCS Level 2/3, CBTC variants) is essential to maintain headways and safety at high speed.

### **Maintenance and Monitoring**

Modern maintenance programs integrate continuous monitoring (strain gauges, accelerometers, temperature sensors), track geometry vehicles, and machine-vision inspections. Predictive analytics minimize interventions and unplanned downtime Tables must be numbered using uppercase Roman numerals. Table captions must be centred and in 10 pt. Captions with table numbers must be placed before their associated tables, as shown in Table 1.

### VI. COMPARATIVE QUANTITATIVE RESULTS

| Parameter                                                        | Ballasted Track | Ballastless (Slab) Track |
|------------------------------------------------------------------|-----------------|--------------------------|
| Initial construction cost (€/km)                                 | 5–7 million     | 7–10 million             |
| Typical service life (years)                                     | 25–30           | 40–60                    |
| Maintenance frequency (major interventions)                      | Every 20–30 MGT | Every 60 MGT             |
| Annual maintenance cost (€/km/yr)                                | 60,000–100,000  | 25,000–40,000            |
| CO <sub>2</sub> emissions (t CO <sub>2</sub> -eq/km over 60 yrs) | 7,000–8,500     | 5,000–6,000              |

### **IARJSET**



### International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12246

### VII. COMPARATIVE TECHNICAL & LIFECYCLE METRICS (REPRESENTATIVE)

Notes: MGT = Million Gross Tons; figures are generalized ranges compiled from comparative studies and industry reports; local project estimates will vary. Lifecycle Cost Curve: conceptual plot showing higher initial cost for slab tracks but lower cumulative cost after ~20–25 years due to reduced maintenance. Maintenance Intervention Frequency (30-year span): bar chart illustrating markedly fewer scheduled interventions for slab tracks. Environmental Indicators: multi-bar chart comparing energy use and CO<sub>2</sub> emissions between track types.

### VIII. DISCUSSION — ENGINEERING IMPLICATION

### **Economics and Project Selection**

Slab tracks are economically attractive for heavily trafficked, dedicated HSR corridors when lifecycle savings and operational reliability justify higher capital outlay. The break-even horizon typically falls between 15–30 years depending on local maintenance costs, train frequency, and renewal strategies.

### Technical Risk and Site Sensitivity

Slab systems' sensitivity to subgrade differential settlement is a central technical risk. For soft or highly variable soils, the cost of subgrade improvement can be significant and may narrow slab track advantages. Design must incorporate rigorous geotechnical investigation, settlement modelling, and robust drainage.

### Operational Resilience and Repairability

Ballasted tracks provide rapid repairability (night-window ballast replacement or tamping). Slab systems require specialized equipment and longer possession times for major repairs; therefore, network planning must account for maintenance windows and contingency routing.

### Environmental Performance

Reduced renewal frequency and higher recyclability improve slab track LCA, delivering notable reductions in embodied carbon. Additionally, slab track's improved noise and vibration performance can reduce community impacts and lower mitigation costs. Digitalization and Maintenance Optimization

Integration of IoT sensors, automated inspection vehicles, and machine learning models for predictive maintenance promise further lifecycle cost reductions. Digital twins can be used to simulate deformation trends and optimize intervention timing.

### IX. RECOMMENDATIONS FOR PRACTICE

Adopt slab track on new, dedicated HSR corridors with high traffic intensity and long planning horizons, subject to subgrade feasibility analysis. Prioritize geotechnical investigation: where soft soils are present, quantify subgrade improvement costs before track selection. Implement comprehensive monitoring (sensors + regular geometry surveys) from day one to detect early anomalies. Plan maintenance windows and redundant routing to accommodate slab track repair requirements without disrupting service. Incorporate LCA in procurement decisions to capture carbon and resource savings over asset life. Pilot advanced materials and modular slab options (prefabricated slabs, UHPC) to reduce on-site work and improve repairability.

### X. LIMITATIONS AND RESEARCH GAPS

Regional data scarcity: Most empirical long-term performance data come from large networks (China, Japan, Europe); limited evidence exists for tropical climates and mixed-use corridors.

Repair economics: Comparative data on the direct costs and duration of major slab repairs are limited and project-specific. Integration with emerging traction systems: Research linking infrastructure design with next-generation traction (hydrogen, battery, maglev) remains limited.

### XI. RECOMMENDATIONS FOR PRACTICE

Adopt slab track on new, dedicated HSR corridors with high traffic intensity and long planning horizons, subject to subgrade feasibility analysis. Prioritize geotechnical investigation: where soft soils are present, quantify subgrade improvement costs before track selection. Implement comprehensive monitoring (sensors + regular geometry surveys) from day one to detect early anomalies. Plan maintenance windows and redundant routing to accommodate slab track repair requirements without disrupting service. Incorporate LCA in procurement decisions to capture carbon and resource savings over asset life. Pilot advanced materials and modular slab options (prefabricated slabs, UHPC) to reduce on-site work and improve repairability.

## IARJSET



### International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering **INTEGRATE 2025** 

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12246

#### XII. CONCLUSION

High-speed railway infrastructure is a strategic, sustainable transport investment. Ballast less (slab) tracks represent the engineering choice best aligned with long-term performance, reliability and environmental goals on dedicated HSR corridors. Careful consideration of geotechnical constraints, maintenance planning, and lifecycle impacts is essential to realize the full benefits. Advances in smart monitoring and material science will continue to optimize HSR infrastructure for the coming decades.

#### REFERENCES

- M. Giunta and F. Praticò, "Life-cycle cost comparison of railway track types," *Conference/Journal*, 2017. C. Charoenwong *et al.*, "Comparative study of slab and ballasted tracks," *Journal of Railway Engineering*, 2023. [2].
- [3]. G. Vignali, "Life-cycle assessment of ballasted vs slab track systems," Environmental Engineering Journal, 2024.
- [4]. S. Choudhary, H. Shrimali, and J. Shrimali, "Techno-managerial phases and challenges in development and implementation of smart city Udaipur," in Proc. 4th Int. Conf. Emerging Trends in Multi-Disciplinary Research, 2023. [Online]. Available: <a href="https://www.researchgate.net/publication/370402952">https://www.researchgate.net/publication/370402952</a>
- K. Poonia, P. Kansara, and S. Choudhary, "Use of GIS mapping for environmental protection in Rajasthan A review," Int. Adv. Res. J. Sci. Eng. Technol. (IARJSET), vol. 10, no. 5, pp. 812-814, 2023.
- S. Choudhary, M. Hasan, M. Suthar, A. Saraswat, and H. Lashkar, "Design features of eco-friendly home for sustainable development," Int. J. Innovative [6]. Res. Electr. Electron. Instrum. Control Eng. (IJIREEICE), vol. 10, no. 1, pp. 88-93, Jan. 2022.
- [7]. S. Choudhary, H. Shrimali, and J. Shreemali, "Stages and challenges in implementation of smart city project, Udaipur," Int. J. Innovative Sci. Res. Technol. (IJISRT), vol. 8, no. 5, pp. 2451-2456, May 2023.
- S. Choudhary, S. Chouhan, M. Jain, K. Panchal, and Y. Bhardwaj, "Development of rain water harvesting system through national highway profiles by [8]. using GIS and field survey," SSRN Electron. J., 2019, doi: 10.2139/ssrn.3348303.
- W. Dong et al., "Survey of ballastless track defects in China's HSR," Technical Monograph, 2022.
- [10]. International Union of Railways (UIC), High-Speed Rail Infrastructure Atlas, UIC Publication, 2024.