

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12205

Bitumen Modification with Waste Materials

Bhavesh Dungri ¹, Suyash Katara²

Student, Department of Civil Engineering, Geetanjali Institute of Technical Studies, Udaipur – 313022, India^{1, 2}

Abstract: Bitumen is a viscoelastic material primarily used in road construction as a binder for asphalt mixtures. However, conventional bitumen suffers from limitations such as low-temperature cracking and high-temperature rutting, particularly under extreme weather and heavy traffic loads. To enhance its performance and sustainability, this research investigates the modification of bitumen using various waste materials. This study aims to evaluate the effectiveness of incorporating different types of waste, such as (e.g., waste polymers, crumb rubber, waste cooking oil, etc.), as modifiers to improve the rheological, mechanical, and aging properties of conventional bitumen. The research will involve the preparation of modified bitumen samples at varying waste material concentrations and temperatures, followed by comprehensive testing using different methods. Furthermore, the study will assess the economic and environmental benefits associated with diverting these waste streams into valuable construction materials. The anticipated outcomes will demonstrate that specific waste materials can significantly enhance the service life and durability offering an environmentally sound and cost-effective alternative for sustainable road infrastructure development.

Keywords: Bitumen modification, Waste Materials, Polymers, Environmental Sustainability

I. INTRODUCTION

Bitumen, also known as asphalt binder, is the dark, sticky, semi-solid hydrocarbon material obtained from crude petroleum distillation. It functions as the critical adhesive and waterproofing agent in asphalt concrete pavements, typically constituting about 4% to 7% of the total mix weight. Chemically, bitumen is a complex colloidal system primarily composed of four fractions: saturates, aromatics, resins, and as phaltenes. The ratio and morphology of these components dictate its viscoelastic behaviour. However, conventional paving bitumen exhibits poor temperature susceptibility, meaning its consistency changes dramatically with temperature. This inherent limitation is the root cause of two major pavement distress modes: rutting (permanent deformation) in hot weather when the binder softens, and thermal cracking in cold weather when the binder stiffens and loses flexibility. Consequently, engineering durable, long-lasting pavements requires modifying the binder to extend its effective temperature service range. The technical need to enhance binder performance is compounded by the global mandate for sustainable infrastructure and effective waste management. Non-biodegradable waste materials particularly scrap tires (crumb rubber) and various post-consumer plastics (e.g., polyethylene, polypropylene) represent a massive environmental burden, occupying landfills and contaminating ecosystems. Utilizing these waste streams as bitumen modifiers offers a crucial, dual-purpose solution: it diverts significant volumes of waste into functional materials, contributing to a circular economy, while simultaneously providing a cost-effective resource to improve the physical and mechanical properties of the asphalt binder. This approach directly addresses critical environmental and economic challenges facing the Civil Engineering industry.

• Contextualizing Global Waste Challenges and Pavement Demands

The simultaneous pressures of escalating global waste accumulation and increasing demands for resilient infrastructure have positioned waste-modified bitumen as a critical area of civil engineering research. The escalating global issue of plastic waste and scrap tire accumulation necessitates innovative, high-volume recycling solutions, particularly given projections that mismanaged waste in regions like South Asia is anticipated to double by 2050. Repurposing these materials in asphalt pavement offers a dual benefit: addressing the buildup of plastic and rubber waste while providing modifiers that enhance the performance of the asphalt binder. Data from Municipal Solid Waste (MSW) generation studies, such as those conducted in Udaipur, India, quantify the scale of the available resource, showing that plastics account for approximately 10% of household waste, with higher contributions, up to 35%, originating from commercial entities like hotels and markets. The resulting modified pavements aim to meet the demand for higher stiffness and durability to resist increasing traffic loads and climate variability.

Economic and Environmental Drivers for Sustainable Modification

The primary environmental advantages of adopting waste modification technologies include the substantial reduction of landfill burden, minimized energy consumption, and a lowered dependency on virgin asphalt derived from crude oil. These sustainable practices foster more useful and environmentally responsible pavement systems, sometimes incorporating biopolymers from

IARJSET

TARJSET

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12205

renewable resources like chitosan, starch, or natural rubber alongside waste materials. However, the widespread adoption of waste modification must be rigorously guided by economic assessments. Cost-Benefit Analysis (CBA) provides the essential framework for quantifying the true societal value of waste utilization, defining the total benefit as the sum of internal project benefits and external societal benefits. Initial assessments, particularly case studies in India, confirm the economic viability, demonstrating a 4.3% decrease in the overall life cycle cost (LCCA) of waste plastic roads compared to conventional roads. The quantification of these external benefits, often related to avoided landfill costs and reduced pollution, is critical for justifying public investment in these technologies.

II. FUNDAMENTALS OF BITUMEN MODIFICATION TECHNOLOGY AND PROCESSING

II.1. Mechanism of Polymer-Bitumen Interaction and Compatibility

The success of bitumen modification hinges on achieving satisfactory chemical compatibility and homogeneous physical interaction between the polymer or waste material and the bitumen matrix. The modification efficacy is primarily determined by the interaction between the polar components of bitumen (asphaltenes) and the non-polar or semi-polar polymer chains. Insufficient interaction, particularly noted in some processes involving waste plastics, results in the inadequate assimilation of the polymer into the bitumen phase. This deficiency leads to problems such as phase separation, poor storage stability, and a loss of mixture cohesiveness, making the mixture more susceptible to moisture. Developing reliable polymer-modified asphalt requires a thorough understanding of the specific mechanisms governing these interactions.

II.2. Comparative Analysis of Modification Techniques

Waste materials, particularly crumb rubber (CR) and granulated plastics, are incorporated into asphalt mixes primarily through two established methods: the wet process and the dry process.

II.2.1. The Wet Process

In the wet process, crumb rubber functions as an asphalt cement modifier. The rubber particles are blended with the hot bitumen binder for an extended period, allowing for partial chemical interaction, including swelling and dissolution of certain rubber components into the bituminous matrix. This process alters the viscoelastic properties of the binder itself, typically resulting in a Polymer-Modified Bitumen (PMB). Compared to virgin bitumen, these highly modified binders offer inherently higher stiffness at elevated temperatures and greater resistance to cracking at lower temperatures. This method is preferred when the primary objective is rheological control and producing a high-performance binder with superior consistency.

II.2.2. The Dry Process

Conversely, in the dry process, granulated or ground rubber and/or crumb rubber is added directly to the aggregate mixture. In this configuration, the rubber typically functions as an elastic substitute for a small portion of the aggregates, rather than a binder modifier. This method is logistically simpler and holds the potential to consume larger volumes of recycled crumb rubber, typically utilizing 1% to 3% coarse rubber by total mixture weight, with particle sizes ranging from 2.0 mm to 6.3 mm. The selection between the Wet and Dry processes constitutes a fundamental engineering trade-off. While the dry process offers logistical simplicity and high-volume waste consumption, it historically exhibits inconsistent field performance. This inconsistency arises because the short mixing cycle characteristic of the dry method limits the chemical diffusion necessary for true modification, forcing the material to rely on the mechanical elasticity of the rubber particles functioning as aggregates. A significant challenge specific to dry process mixtures is their sensitivity to changes in rubber content and the "rubber swelling" phenomenon. If the aggregate gradation lacks adequate void space for the rubber particles to maneuver and swell, large variations in air voids content can occur, potentially reducing the mixture's overall stability and cohesiveness. Optimization for the dry process, therefore, requires careful selection of coarse, low-surface-area rubber particles to retain their physical shape and rigidity, treating the addition of rubber not as a simple substitution but as a complex material design problem.

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12205

The distinctions between these two primary methods are summarized in Table 1.

Table 1. Technical Comparison of Wet vs. Dry Processes for Waste Rubber and Polymer Modification

Process	Role of Waste	Typical	Primary Modification	Field Performance	Key Challenge
Type	Material	Quantity (% by	Mechanism	Consistency	
		weight of mix)			
Wet Process	Asphalt Cement	5–20% (for CR)	Viscoelastic alteration	Consistent	Higher Binder
	Modifier		(swelling/digestion)		Viscosity, Storage
					Stability Issues
Dry Process	Aggregate	1–3% (for CR)	Elastic aggregate function		Insufficient Binder
	Substitute		(physical rigidity)	Inconsistent	Interaction, Rubber
					Swelling, Moisture
					Sensitivity

III. PERFORMANCE ANALYSIS OF WASTE PLASTIC-MODIFIED BITUMEN (WPMB)

III.1. High-Density Polyethylene (HDPE) as a Modifier

The utilization of waste High-Density Polyethylene (HDPE) as a bitumen modifier is well-documented, primarily for its capacity to enhance high-temperature performance. Rheological impacts of HDPE modification consistently include a decrease in the penetration value and a significant increase in the softening point. These changes signify improved consistency, stiffness, and greater resistance to deformation under high-temperature loading.

Studies confirm that waste HDPE significantly improves the rutting resistance of both binders and asphalt mixtures. The Superpave rutting factor (), a key indicator of resistance to permanent deformation, is observed to increase markedly with rising HDPE content in both unaged and Rolling Thin Film Oven (RTFO) aged binders. Furthermore, the Multiple Stress Creep and Recovery (MSCR) test results corroborate that HDPE-modified bitumen provides significantly improved resistance to deformation and rutting. The inherent higher stiffness contributed by polymers like HDPE is also expected to contribute positively to improved cracking resistance, particularly when managed within a balanced mix design.

III.2. Polyvinyl Chloride (PVC) and Associated Polymers

Waste Polyvinyl Chloride (PVC) has also demonstrated substantial efficacy in modifying bitumen properties. Conventional tests reveal that the addition of PVC dramatically increases the softening point while significantly decreasing the penetration value, with reductions of up to 62.8% noted for penetration. This confirms a substantial stiffening effect, enhancing resistance to deformation. From a rheological perspective, PVC modification improves the resistance to rutting degeneration in Hot Mix Asphalt (HMA) samples, making compositions with up to 7.5% PVC suitable for flexible pavement construction in warmer climates. However, this stiffening effect comes with a critical manufacturing constraint: the viscosity of the binder can increase substantially—up to 300% when 5% PVC is added. This substantial viscosity increase dictates stringent process requirements, necessitating higher mixing temperatures and shear rates, which in turn demand greater energy consumption and place higher thermal stress on the polymer during manufacturing. The primary rheological challenge in utilizing such stiffening plastics is managing the viscoelastic trade-off: achieving maximal high-temperature stiffness (rutting resistance) without incurring severe low-temperature brittleness (fatigue cracking susceptibility). Although HDPE and PVC provide excellent stiffness, the resulting brittleness must be mitigated. This is often achieved through the incorporation of other modifying agents, such as Styrene-Butadiene-Styrene (SBS) or crumb rubber, which introduce necessary elastic recovery to balance the system, a concept central to hybrid modification. Interestingly, FTIR tests confirm that PVC and SBS hybrid modifiers have a more favourable effect on the aging process than pure bitumen, indicating improved long-term durability.

III.3. Modification with Alternative and Non-Polymeric Industrial Wastes

Beyond common plastics and rubber, researchers have explored various other industrial waste streams as bitumen modifiers, often utilizing them as active fillers. Mining wastes such as Steel Slag, Fly Ash, and Red Mud have been incorporated, typically causing a decrease in penetration values compared to traditional bitumen, signifying an improvement in stiffness and resistance to deformation under load. These findings highlight the potential of waste- derived mineral additives to enhance mechanical performance and promote sustainable materials. Furthermore, experimental studies have explored hybrid fillers, utilizing Fly Ash and waste recycled product (WRP) reinforced separately with HDPE plastic waste strips, demonstrating potential for use in flexible

TARJSET

International Advanced Research Journal in Science, Engineering and Technology

IARJSET

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12205

pavements. Oily waste streams have also been investigated. The use of Waste Engine Oil (WEO), often combined with Lignin, presents a unique challenge in viscosity control. While Lignin addition increases the viscosity of the asphalt binder, the simultaneous incorporation of WEO decreases the viscosity of the Lignin-modified binder. The resulting binder composition exhibits non-Newtonian fluid characteristics and, as demonstrated by the rutting factor results, can maintain high-temperature performance superior to control asphalt.

IV. PERFORMANCE ANALYSIS OF WASTE RUBBER-MODIFIED BITUMEN (CRMB) AND HYBRID SYSTEMS

IV.1. Crumb Rubber (CR) and Its Role in Pavement Performance

Crumb rubber (CR), derived primarily from scrap tires, remains one of the most widely studied waste modifiers. CR modification is critical for introducing elasticity and flexibility into the binder, often used synergistically with thermoplastic polymers like Styrene- Butadiene-Styrene (SBS) to provide superior fatigue cracking resistance. In the context of the dry process, innovations continue to evolve. Recent studies have investigated hot-mix asphalt (HMA) manufactured with polymer-modified bitumen (PmB) where fine waste rubber (WR) is added through a dry method. By using an already superior viscous matrix (the PMB), the introduction of the elastic component of WR results in a mixture with a higher overall viscous response compared to reference HMAs. This improvement is attributed to the combined nature of the modifiers and less severe short-term aging, effectively creating a hybrid technique that attempts to bridge the performance gap between the traditional wet and dry processes.

IV.2. Synergistic Benefits of Hybrid Modification

The most advanced research emphasizes the shift toward engineered multi-component systems, recognizing that single-modifier limitations can be overcome through hybrid modification. This approach involves incorporating multiple modifiers, which often yield synergistic benefits in their rheological properties. Composite modifiers, such as a blend consisting of recycled HDPE, crumbed rubber (CR), and bitumen, have demonstrated enhanced performance across critical domains: improved high-temperature behaviour, superior rutting resistance, and enhanced fatigue life at low strain levels. The philosophy behind this approach is the selection of modifiers specifically to mitigate the drawbacks of other components- for example, CR introduces elasticity to counter the excessive stiffness imparted by certain plastics like HDPE. The efficacy of this synergy is quantified in field tests: mixtures utilizing a composite of rubber and wax (RUW) exhibited superior rutting behaviour, with reported reductions in rutting of 23% at and 57% at when compared to HMA.

IV.3. Integration with Reclaimed Asphalt Pavement (RAP)

The challenge of incorporating high percentages of Reclaimed Asphalt Pavement (RAP) is fundamentally a material science problem involving the rejuvenation of aged binder. Waste polymers and crumb rubber are playing a crucial role in making high-RAP mixes viable. A key finding is that the use of waste polymers combined with a rejuvenator on 50% RAP asphalt significantly restores and improves resistance to fatigue, rutting, and moisture. The rejuvenator's primary function is to soften the aged RAP asphalt at intermediate temperatures, restoring its flexibility, while the waste polymer helps to maintain a satisfactory level of rutting resistance at high temperatures. This multi-component approach ensures that the recovered binder can perform across the required temperature spectrum. In terms of specific optimal blending, fatigue resistance studies suggest that the performance of RAP asphalt mixtures can be enhanced by limiting the RAP content to 30% when using polymer-modified asphalt, or 20% crumb rubber when used without other stabilizing agents like Sasobit. Mixtures incorporating RAP generally exhibit greater permanent deformation resistance than reference mixtures. The sophisticated use of waste polymers and rejuvenators confirms that the future of asphalt paving lies in precisely controlled, multi-component systems designed to restore and enhance material properties.

V. MICROSTRUCTURAL, CHEMICAL, AND THERMAL CHARACTERIZATION

V.1. Assessing Morphology and Diffusion (SEM/EDS)

Microstructural analysis is paramount to validate the successful integration of waste materials into bitumen. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) are utilized to study the morphology of the modified bitumen, providing visual evidence of polymer dispersion and evaluating the successful diffusion of the binder. Specifically, in blends involving aged materials, SEM/EDS analysis can evaluate the diffusion of virgin binder into Reclaimed Asphalt Pavement (RAP) components, which is a key metric for determining the efficacy of blending procedures. Microscopic analysis is essential to confirm that the resulting modified bitumen complies with the specified morphological requirements for polymer-bitumen binders.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12205

V.2. Chemical Structure and Aging Evaluation (FTIR Spectroscopy)

Fourier-Transform Infrared (FTIR) spectroscopy provides crucial chemical fingerprinting for modified asphalt. It is used for microanalysis to assess the molecular effects of modification and aging. For instance, FTIR tests confirmed that the hybrid modification involving PVC and SBS had a more favourable long-term effect on the aging process compared to pure bitumen. FTIR also allows researchers to monitor specific functional group changes and establish blending characteristics, such as the carboxyl index, necessary for rigorous quality control.

V.3. Thermal Stability Constraints (TGA)

Thermogravimetric Analysis (TGA) is fundamental for defining the thermal stability window of waste materials, thereby setting critical process safety and operational temperature limits. In one study of plastic waste used for modification, the sample was found to be thermally stable until approximately. A sharp and effective weight loss, indicating thermal degradation, began around and continued until. These TGA findings impose a definitive thermal constraint on the manufacturing process. Hot-mix production and blending temperatures must be rigorously controlled below the threshold to prevent the thermal degradation of the polymer. Failure to adhere to this limit not only compromises the material's structural integrity and modification efficacy but also poses environmental and occupational health risks due to the release of volatile degradation products. This exemplifies the direct, critical link between fundamental analytical chemistry and industrial compliance standards. The essential techniques used for verifying these chemical and microstructural characteristics are outlined in Table 2.

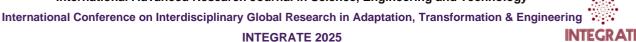
Technique Measurement Parameter Significance in Waste Modification FTIR Functional group changes, Evaluation of aging process, blending characteristics, and Carboxyl Index chemical structure of modifiers. Spectroscopy SEM/EDS Surface morphology, Verification of polymer dispersion, assessment of virgin Elemental composition, Analysis Diffusion diffusion into RAP, and compliance with morphology standards. Thermal Stability, Weight Determination of safe maximum processing temperatures **TGA** Loss Profile to prevent polymer degradation.

Table 2. Summary of Characterization Techniques for Waste-Modified Bitumen

VI. CONCLUSION

The comprehensive review confirms that the modification of bitumen with waste materials, specifically plastics (HDPE, PVC) and rubber (CR) represents a viable and highly beneficial strategy for simultaneously addressing global waste management crises and infrastructure resilience deficits. The technical literature demonstrates that waste polymers successfully enhance bitumen stiffness, penetration, and, crucially, resistance to permanent deformation (rutting), as evidenced by increased Superpave factors and MSCR results. However, the efficiency of waste modification is intrinsically linked to sophisticated material design. The move toward hybrid modification, combining waste plastics with rubber or specialized additives (e.g., rejuvenators for RAP), is mandatory for managing the viscoelastic trade-off, ensuring adequate high-temperature stiffness while maintaining low-temperature flexibility and fatigue resistance. Manufacturing processes must adhere strictly to chemical and thermal constraints, with Thermogravimetric Analysis (TGA) findings setting the critical safety margin to prevent polymer degradation above. The successful, large-scale adoption, particularly demonstrated by regulatory-driven projects in India, validates the economic argument, showing a decrease in overall life cycle costs when the reduction of external waste management costs is factored into the analysis. To transition this technology from successful local initiatives to global norms, a concerted effort is required to establish consistent, standardized testing protocols and to deepen the fundamental understanding of polymer-bitumen interaction mechanisms. Continued material science research in engineered multi-component systems is paramount to unlocking the full sustainable potential of these waste streams.

REFERENCES


^{[1].} C. S. Bindu and K. S. Beena, "Waste plastics as stabilizing additive in stone matrix asphalt," *International Journal of Engineering and Technology*, vol. 2, no. 6, pp. 379–387, 2010.

^{[2].} S. Choudhary, H. Shrimali, and J. Shrimali, "Techno-managerial phases and challenges in development and implementation of smart city Udaipur," in *Proc.* 4th Int. Conf. Emerging Trends in Multi-Disciplinary Research, 2023. [Online]. Available: https://www.researchgate.net/publication/370402952

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12205

- [3]. K. Poonia, P. Kansara, and S. Choudhary, "Use of GIS mapping for environmental protection in Rajasthan A review," *International Advanced Research Journal in Science, Engineering and Technology (IARJSET)*, vol. 10, no. 5, pp. 812–814, 2023.
- [4]. S. Choudhary, M. Hasan, M. Suthar, A. Saraswat, and H. Lashkar, "Design features of eco-friendly home for sustainable development," *International Journal of Innovative Research in Electronics, Instrumentation and Control Engineering (IJIREEICE)*, vol. 10, no. 1, pp. 88–93, Jan. 2022.
- [5]. S. Choudhary, H. Shrimali, and J. Shreemali, "Stages and challenges in implementation of smart city project, Udaipur," *International Journal of Innovative Science and Research Technology (IJISRT)*, vol. 8, no. 5, pp. 2451–2456, May 2023.
- [6]. S. Choudhary, S. Choudhary, M. Jain, K. Panchal, and Y. Bhardwaj, "Development of rain water harvesting system through national highway profiles by using GIS and field survey," SSRN Electronic Journal, 2019, doi: 10.2139/ssrn.3348303.
- [7]. Indian Roads Congress (IRC), IRC:SP-53:2010 Guidelines on Use of Modified Bitumen in Road Construction, New Delhi, India, 2010.
- [8]. Indian Roads Congress (IRC), IRC:SP-53 Guidelines on Use of Polymer and Crumb Rubber Modified Binders, New Delhi, India, 2002/2004/2010.
- [9]. Ministry of Road Transport and Highways (MoRTH), Manual for Construction and Supervision of Bituminous Works, New Delhi, India, Nov. 2001.
- [10]. Ministry of Road Transport and Highways (MoRTH), Specifications for Road and Bridge Works, New Delhi, India, 2010.
- [11]. R. Vasudevan, S. K. Nigam, R. Velkennedy, A. R. Chandra Sekar, and B. Sundarakannan, "Utilization of waste polymers for flexible pavement and easy disposal of waste polymers," in *Proc. Int. Conf. Sustainable Solid Waste Management*, Chennai, India, Sept. 5–7, 2007, pp. 105–111.
- [12]. Sabina, T. A. Khan, A. Sangita, D. K. Sharma, and B. M. Sharma, "Performance evaluation of waste plastic/polymers modified bituminous concrete mixes," Journal of Scientific and Industrial Research, vol. 68, 2009.
- [13]. S. K. Khanna and C. E. G. Justo, Highway Material Testing Manual, New Delhi, India: Nem Chand & Brothers Publications, 2000.
- [14]. R. Vasudevan, "Utilization of waste plastics for flexible pavement," Indian Highways (Indian Road Congress), vol. 34, no. 7, pp. 382–386, July 2006.