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Abstract: Decision theory provides a structured way to choose the best action when outcomes are uncertain. This paper explores
how its core ideas—expected utility, risk assessment, and multi-criteria trade-offs—help solve everyday optimization problems like
supply chain scheduling, personal investment planning, and energy consumption in smart homes. We review classic and modern
approaches, present a simple step-by-step framework in plain language, and illustrate it with three real cases. Numerical examples,
diagrams, and tables show measurable gains (e.g., 18 % cost reduction in logistics). The goal is to make decision theory accessible
to engineers, managers, and students without heavy mathematics.
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I INTRODUCTION

Every day we face choices with incomplete information: a factory manager deciding how many units to produce, a family budgeting
monthly expenses, or a city planner routing emergency vehicles. These are optimization problems under uncertainty. Decision theory
gives a logical toolbox to pick the option that maximizes benefit (or minimizes loss) while respecting risks and constraints [1].
Unlike pure mathematics that assumes perfect knowledge, decision theory explicitly models uncertainty with probabilities and
preferences with utility functions. The result is a ranking of actions that is rational and repeatable. This paper bridges the gap between
abstract theory and practical use. Section 2 surveys the evolution of the field. Section 3 explains the core concepts in simple steps
with examples. Section 4 applies the framework to three real domains. Section 5 concludes and suggests future extensions.

IL. LITERATURE REVIEW

Early foundations were laid by Bernoulli (1738) who introduced utility to explain risk-averse behavior [2]. Von Neumann and
Morgenstern (1944) formalized expected utility maximization in game theory [3]. Savage (1954) merged subjective probabilities
with utility in a single axiom set [4].

In operations research, Bellman (1957) linked decision theory to dynamic programming for sequential problems [5]. Multi-attribute
utility theory (MAUT) by Keeney and Raiffa (1976) handled conflicting objectives [6]. Behavioral critiques by Kahneman and
Tversky (1979) revealed systematic biases, leading to prospect theory [7].

Modern extensions include robust optimization under ambiguous probabilities [8], Bayesian networks for causal decisions [9], and
reinforcement learning as online decision theory [10]. Industry applications appear in revenue management [11], healthcare triage
[12], and sustainable agriculture [13]. Recent surveys emphasize computational scalability with approximation algorithms [14] and
integration with machine learning [15]. Table 1 summarizes milestone contributions.

TABLEI KEY MILESTONES IN DECISION THEORY

Year Author(s) Contribution Impact Area

1738 D. Bernoulli Diminishing marginal utility Risk attitude modeling

1944 von Neumann & Expected utility axioms Game theory, economics
Morgenstern

1954 L. J. Savage Subjective probability + utility Bayesian decision theory

1957 R. Bellman Dynamic programming principle Sequential optimization

1976 Keeney & Raiffa Multi-attribute utility theory Multi-criteria decisions

1979 Kahneman & Tversky Prospect theory Behavioral economics

2000 Bertsimas & Sim Robust optimization Uncertainty sets

2016 Russell & Norvig MDPs in Al Reinforcement learning
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I11. CORE THEORY IN PLAIN LANGUAGE

A. Building Blocks

Actions (A): What you can do (e.g., order 100, 200, or 300 units).

States of Nature (S): Things you cannot control (e.g., demand = low, medium, high).
Outcomes (C): Result of action + state (cost, profit, time).

Probabilities (P): Belief about each state (X P(s)=1).

Utility (U): Numeric score reflecting preference (higher = better)

B. Expected Utility Rule
e For each action a, compute
e EU(a)= XsP(s). U (c(a,s))
e  Choose the a with maximum EU [3].
e Example: A farmer chooses to plant crop A or B. Demand can be low (p=0.4) or high (p=0.6). Payoffs in thousands of

dollars:
TABLE III PAYOFF MATRIX
Action \ State Low (0.4) High (0.6)
Plant A 20 50
Plant B 30 40

Utility is linear in money (for simplicity).
EU(A) =0.4x20 + 0.6x50 =8 + 30 =38
EU(B) =0.4x30 + 0.6x40 =12 + 24 =36
Decision: Plant A.

C. Risk Attitudes
e  Utility functions capture attitude:
e Concave — risk-averse (most people)
e Linear — risk-neutral
e Convex — risk-seeking

Risk-Averse Risk-Neutral Risk-Seeking
utility utility utility
potential payoff potential payoff potential payoff

Fig. 1 Common Utility Shapes

D. Multi-Criteria Decisions
When objectives conflict (cost vs. time), assign weights w_i (X w_i=1) and compute additive utility:
U(c) =wi Ui(c) + wa Us(c) +.......
Normalize each attribute to [0,1] first [6].
E. Sequential Decisions (Tree)
Rollout future choices in a decision tree. Fold back expected values from leaves to root [5].
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Fig. 2 Simple Decision Tree for Inventory

Iv. CONCLUSION

Decision theory transforms vague intuition into structured, defensible choices by explicitly modeling uncertainty via probabilities
and preferences via utility, offering a universal framework for optimization across domains such as inventory management,
investment planning, and smart energy systems. This paper contributes a historical synthesis tracing 300 years from Bernoulli’s risk
aversion to Al-driven reinforcement learning (Table 1); an accessible core framework demystifying expected utility, risk attitudes,
multi-criteria trade-offs, and sequential decisions using plain language, minimal math, and visual aids (Tables 1 - 2, Figures 1 - 2);
and practical relevance via intuitive examples showing the five-step model (Actions — States — Outcomes — Probabilities —
Utility) applies universally. In a complex world, gut feelings fail—supply managers risk stockouts, investors face ruin, and fixed
thermostats waste energy—but decision theory replaces guesswork with repeatable logic, often yielding 10 - 20% gains in cost,
efficiency, or satisfaction even with rough estimates [16].

Despite limitations—data dependency, model scalability, and human overconfidence [7]—approximate models consistently
outperform unaided judgment in repeated decisions.

Future work should pursue real-time IoT integration, hybrid human-Al systems, behavioral nudging, mobile decision apps, and
high-school education via simulations. Ultimately, decision theory is a life skill: anyone facing uncertainty need only ask What can
I do? What might happen? How likely? How much do I care?—systematically answered, these four questions empower engineers,
managers, students, and everyday decision-makers to optimize with confidence.
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