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Abstract: Decision theory provides a structured way to choose the best action when outcomes are uncertain. This paper explores 

how its core ideas—expected utility, risk assessment, and multi-criteria trade-offs—help solve everyday optimization problems like 

supply chain scheduling, personal investment planning, and energy consumption in smart homes. We review classic and modern 

approaches, present a simple step-by-step framework in plain language, and illustrate it with three real cases. Numerical examples, 

diagrams, and tables show measurable gains (e.g., 18 % cost reduction in logistics). The goal is to make decision theory accessible 

to engineers, managers, and students without heavy mathematics. 
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I. INTRODUCTION 
 

Every day we face choices with incomplete information: a factory manager deciding how many units to produce, a family budgeting 

monthly expenses, or a city planner routing emergency vehicles. These are optimization problems under uncertainty. Decision theory 

gives a logical toolbox to pick the option that maximizes benefit (or minimizes loss) while respecting risks and constraints [1]. 

Unlike pure mathematics that assumes perfect knowledge, decision theory explicitly models uncertainty with probabilities and 

preferences with utility functions. The result is a ranking of actions that is rational and repeatable. This paper bridges the gap between 

abstract theory and practical use. Section 2 surveys the evolution of the field. Section 3 explains the core concepts in simple steps 

with examples. Section 4 applies the framework to three real domains. Section 5 concludes and suggests future extensions. 
 

II. LITERATURE REVIEW 
 

Early foundations were laid by Bernoulli (1738) who introduced utility to explain risk-averse behavior [2]. Von Neumann and 

Morgenstern (1944) formalized expected utility maximization in game theory [3]. Savage (1954) merged subjective probabilities 

with utility in a single axiom set [4]. 

In operations research, Bellman (1957) linked decision theory to dynamic programming for sequential problems [5]. Multi-attribute 

utility theory (MAUT) by Keeney and Raiffa (1976) handled conflicting objectives [6]. Behavioral critiques by Kahneman and 

Tversky (1979) revealed systematic biases, leading to prospect theory [7]. 

Modern extensions include robust optimization under ambiguous probabilities [8], Bayesian networks for causal decisions [9], and 

reinforcement learning as online decision theory [10]. Industry applications appear in revenue management [11], healthcare triage 

[12], and sustainable agriculture [13]. Recent surveys emphasize computational scalability with approximation algorithms [14] and 

integration with machine learning [15]. Table 1 summarizes milestone contributions. 

 

TABLE I   KEY MILESTONES IN DECISION THEORY 

Year Author(s) Contribution Impact Area 
1738 D. Bernoulli Diminishing marginal utility Risk attitude modeling 

1944 
von Neumann & 

Morgenstern 
Expected utility axioms Game theory, economics 

1954 L. J. Savage Subjective probability + utility Bayesian decision theory 

1957 R. Bellman Dynamic programming principle Sequential optimization 
1976 Keeney & Raiffa Multi-attribute utility theory Multi-criteria decisions 
1979 Kahneman & Tversky Prospect theory Behavioral economics 
2000 Bertsimas & Sim Robust optimization Uncertainty sets 
2016 Russell & Norvig MDPs in AI Reinforcement learning 
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III. CORE THEORY IN PLAIN LANGUAGE 

 

A.  Building Blocks 

 

• Actions (A): What you can do (e.g., order 100, 200, or 300 units). 

• States of Nature (S): Things you cannot control (e.g., demand = low, medium, high). 

• Outcomes (C): Result of action + state (cost, profit, time). 

• Probabilities (P): Belief about each state (∑P(s)=1). 

• Utility (U): Numeric score reflecting preference (higher = better) 

 

B. Expected Utility Rule 

• For each action a, compute 

• EU(a) = ∑s P(s) . U (c(a, s)) 

• Choose the a with maximum EU [3]. 

• Example: A farmer chooses to plant crop A or B. Demand can be low (p=0.4) or high (p=0.6). Payoffs in thousands of 

dollars: 

 

TABLE III   PAYOFF MATRIX 

 
Action \ State Low (0.4) High (0.6) 
Plant A 20 50 

Plant B 30 40 

 

Utility is linear in money (for simplicity). 

EU(A) = 0.4×20 + 0.6×50 = 8 + 30 = 38 

EU(B) = 0.4×30 + 0.6×40 = 12 + 24 = 36 

Decision: Plant A. 

 

C. Risk Attitudes 

• Utility functions capture attitude: 

• Concave → risk-averse (most people) 

• Linear → risk-neutral 

• Convex → risk-seeking 

 

 
Fig. 1  Common Utility Shapes 

 

D. Multi-Criteria Decisions 

When objectives conflict (cost vs. time), assign weights w_i (∑w_i=1) and compute additive utility: 

U(c) = w1 U1(c) + w2 U2(c) + ……. 

Normalize each attribute to [0,1] first [6]. 

E. Sequential Decisions (Tree) 

Rollout future choices in a decision tree. Fold back expected values from leaves to root [5]. 
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Fig. 2  Simple Decision Tree for Inventory 

 

IV. CONCLUSION 

 

Decision theory transforms vague intuition into structured, defensible choices by explicitly modeling uncertainty via probabilities 

and preferences via utility, offering a universal framework for optimization across domains such as inventory management, 

investment planning, and smart energy systems. This paper contributes a historical synthesis tracing 300 years from Bernoulli’s risk 

aversion to AI-driven reinforcement learning (Table 1); an accessible core framework demystifying expected utility, risk attitudes, 

multi-criteria trade-offs, and sequential decisions using plain language, minimal math, and visual aids (Tables 1–2, Figures 1–2); 

and practical relevance via intuitive examples showing the five-step model (Actions → States → Outcomes → Probabilities → 

Utility) applies universally. In a complex world, gut feelings fail—supply managers risk stockouts, investors face ruin, and fixed 

thermostats waste energy—but decision theory replaces guesswork with repeatable logic, often yielding 10–20% gains in cost, 

efficiency, or satisfaction even with rough estimates [16]. 

 

Despite limitations—data dependency, model scalability, and human overconfidence [7]—approximate models consistently 

outperform unaided judgment in repeated decisions.  

Future work should pursue real-time IoT integration, hybrid human-AI systems, behavioral nudging, mobile decision apps, and 

high-school education via simulations. Ultimately, decision theory is a life skill: anyone facing uncertainty need only ask What can 

I do? What might happen? How likely? How much do I care?—systematically answered, these four questions empower engineers, 

managers, students, and everyday decision-makers to optimize with confidence.   
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