

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12255

Digital Twins for Sustainable Innovation: A Sectoral Review

Arti Sharma¹, Amogh Sharma², Dilansh Jain³

Professor Department of Electronics and Communication Engineering, GITS, Udaipur (India)¹ arti.sharma@gits.ac.in¹

Students, Department of Electronics and Communication Engineering, GITS, Udaipur (India)^{2,3}

Abstract: Digital twin technology, a foundation stone of Industry 4.0, is transforming operations by creating real-time digital replicas of physical systems. This paper talks about the survey of key twinning models, enabling technologies, and optimization techniques, informing about how digital twins describe physical challenges, forecast and outcomes. Our analysis goes beyond smart cities and renewable energy to examine applications in healthcare, agriculture, and electric vehicles. In healthcare, patient-specific organ twins provide continuous monitoring, early detection of irregularities, and training for medical students. In agriculture, sensor-enabled twins monitor soil conditions, crop health, and weather in real time, enabling early disease detection, optimized irrigation, and improved yield protection. In the electric vehicle industry, thermal dynamics and chemical aging to predict overheating and fire risks, enhancing safety and long life. This paper emphasizes the need for an approach that integrates IoT sensors, cloud platforms, and AI analytics for enhanced visualization, simulation, and prediction capabilities - unlocking more intelligent and sustainable systems across various sectors.

keywords: Digital Twin, IoT, AI, Predictive Modelling, Healthcare, Electric Vehicles, Industry 4.0, Synchronization, Optimization, Interoperability.

I. INTRODUCTION

The convergence of digitalization, sustainability imperatives, and advanced analytics has catalysed the emergence of digital twins (DTs) as a transformative paradigm in modern industry and society. A digital twin is a dynamic, high-fidelity virtual representation of a physical entity-be it a product, process, or system-continuously updated with real-time data to mirror, predict, and optimize its real-world counterpart. This bidirectional linkage between the physical and digital realms enables closed-loop feedback, simulation, and decision support, fundamentally altering how organizations approach lifecycle management, resource optimization, and sustainable innovation.

The urgency of sustainable development, as articulated in global frameworks such as the United Nations Sustainable Development Goals (SDGs), has intensified the search for intelligent, data-driven solutions that can decouple economic growth from environmental impact. Digital twins, by enabling lifecycle intelligence, predictive maintenance, and circular economy integration, are increasingly recognized as key enablers of responsible industrial innovation and eco-innovation capacity.

This review paper aims to provide a comprehensive, sectoral analysis of digital twin technology for sustainable innovation. The objectives are to:

- Elucidate the conceptual models (P2V, V2P) and theoretical underpinnings of digital twins.
- Examine the enabling technologies-IoT, cloud, edge computing, AI/ML-that form the backbone of DT ecosystems.
- Analyse optimization techniques, including multi-objective and predictive modelling, as well as model calibration and synchronization strategies.
- Review methodologies and frameworks for DT implementation in Industry 4.0, civil infrastructure, and healthcare.
- Present detailed sectoral applications in healthcare, agriculture, and electric vehicles, supported by case studies and empirical evidence.
- Summarize the results and discuss challenges related to sensor data quality, synchronization, modelling accuracy, and data processing.
- Propose a multidisciplinary framework for digital twin ecosystems, emphasizing standards, interoperability, and future research directions.

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12255

II. METHODOLOGY

A. Literature Review and Framework Synthesis

A systematic literature review was conducted, drawing from peer-reviewed journals, industry whitepapers, standards documents, and case studies published between 2021 and 2025. The review focused on digital twin conceptual models, enabling technologies, optimization techniques, and sectoral applications in healthcare, agriculture, and electric vehicles. Methodological rigor was ensured by cross-referencing multiple sources and synthesizing findings into comparative tables and multidisciplinary frameworks.

B. Conceptual Models and Theoretical Foundations

The review adopted a multi-layered approach, examining both physical-to-virtual (P2V) and virtual-to-physical (V2P) twinning, as well as the feedback loops and synchronization mechanisms that underpin high-fidelity DTs. Theoretical models were analysed in the context of system-of-systems engineering, cyber-physical systems, and lifecycle management.

III. DIGITAL TWIN CONCEPTUAL MODELS

- A. **Definitions and Core Elements:** A digital twin is defined as a synchronized, high-fidelity digital representation of a physical entity, system, or process, continuously updated with real-time data to enable simulation, prediction, and optimization. The core elements of a digital twin include:
 - Physical Entity: The real-world object or system being modelled.
 - **Digital Representation:** The virtual model, which may include geometric, behavioural, and contextual data.
 - **Data Connection:** The communication channel (digital thread) enabling bidirectional data flow between the physical and digital realms.
 - Feedback Loop: The mechanism by which insights from the digital twin inform actions in the physical world, and vice versa

B. P2V and V2P Twinning: Theory and Practice

- 1. **Physical-to-Virtual (P2V) Twinning:** P2V twinning involves the continuous acquisition of data from the physical entity via sensors, IoT devices, and control systems-and its integration into the digital model. This enables real-time monitoring, anomaly detection, and predictive analytics. The fidelity of the digital twin depends on the quality, granularity, and synchronization of the incoming data.
- 2. *Virtual-to-Physical (V2P) Twinning:* V2P twinning extends the concept by enabling the digital twin to send control commands or optimization recommendations back to the physical entity. This bidirectional feedback loop is essential for closed-loop control, autonomous operation, and adaptive optimization. V2P twinning is particularly relevant in applications such as predictive maintenance, process optimization, and adaptive manufacturing.
- 3. *Hybrid and System-of-Systems Models:* Advanced DT implementations often involve hybrid models that combine physical simulation (e.g., finite element analysis) with data-driven approaches (e.g., machine learning), as well as system-of-systems architectures that integrate multiple DTs across assets, processes, and organizational boundaries.

IV. ENABLING TECHNOLOGIES FOR DIGITAL TWINS

A. IoT Architectures and Sensor Networks

The Internet of Things (IoT) forms the backbone of digital twin ecosystems, enabling the continuous acquisition of real-time data from distributed sensors, actuators, and control systems. IoT architectures for DTs typically include:

- Sensor Networks: Deployments of heterogeneous sensors (e.g., temperature, vibration, strain, humidity) for comprehensive data capture.
- Communication Protocols: Use of standards such as MQTT, OPC UA, ZigBee, and 5G for reliable, low-latency data transmission.
- Edge Devices: Local processing units that perform preliminary data filtering, aggregation, and anomaly detection before forwarding data to the cloud or central DT platform.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12255

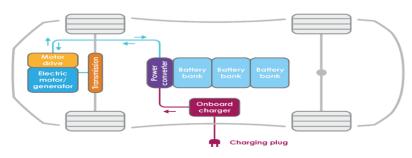


Fig 1: Digital Twin Architecture for EV Battery Management

B. Cloud, Edge, and Distributed Computing

- 1. Cloud Computing: Cloud platforms provide scalable storage, high-performance computing, and advanced analytics capabilities for digital twins. They enable the aggregation, processing, and long-term storage of massive sensor datasets, as well as the deployment of AI/ML models for predictive analytics.
- 2. Edge Computing: Edge computing brings data processing closer to the source, reducing latency and bandwidth requirements. Edge nodes can perform real-time analytics, anomaly detection, and local control, enabling faster response times and improved resilience in mission-critical applications.
- 3. Hybrid Architectures: Hybrid edge-cloud architectures combine the strengths of both paradigms, enabling seamless integration, workload balancing, and adaptive decision-making across distributed environments.

C. Artificial Intelligence and Machine Learning

AI and ML are integral to the evolution of digital twins from static models to dynamic, adaptive systems. Key applications include:

Predictive Analytics: Forecasting equipment failures, process deviations, and lifecycle events based on historical and real-time data. **Prescriptive Optimization:** Recommending optimal actions or control strategies to maximize performance, efficiency, or sustainability objectives.

Reinforcement Learning: Enabling autonomous adaptation and control in complex, uncertain environments. Sensor Data Fusion: Integrating heterogeneous data streams for enhanced situational awareness and decision support.

Table I: Comparative Overview of Enabling Technologies for Digital Twins

Technology	Functionality	Sectoral Relevance	Key Standards/Frameworks
IoT	Real-time data acquisition	All sectors	MQTT, OPC UA, ISO/IEC 30141
Cloud Computing	Scalable analytics, storage	Manufacturing, Healthcare	ISO 23247, IEC 62832-1
Edge Computing	Low-latency local processing	EVs, Civil Infrastructure	IEEE P2806
AI/ML	Predictive analytics, control	All sectors	DTC, IIC

D. Standards, Interoperability, and Data Models

Interoperability is critical for the scalability and sustainability of digital twin ecosystems. Key standards and frameworks include:

- **ISO 23247:** Digital Twin Framework for Manufacturing.
- IEC 62832-1: Digital Factory Framework.
- **IEEE P2806:** System Architecture for Digital Representation.
- IIC, DTC, and Gemini Principles: Industry consortia and best practices for data models, security, and information management.

V. OPTIMIZATION TECHNIQUES IN DIGITAL TWINS

A. Multi-Objective and Constrained Optimization

Digital twins frequently address complex optimization problems involving multiple, often conflicting objectives-such as maximizing efficiency while minimizing environmental impact or cost. Techniques include:

International Advanced Research Journal in Science, Engineering and Technology

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12255

Genetic Algorithms (GA): Used for multi-objective optimization in building energy management, HVAC systems, and manufacturing.

Particle Swarm Optimization (PSO): Applied to HVAC control, process scheduling, and resource allocation.

Tabu Search and Metaheuristics: Employed for supply chain optimization and logistics resilience. **Linear and Nonlinear Programming:** Used for process control, energy optimization, and scheduling.

Table II: Optimization Techniques in Digital Twin Applications

Technique	Application Area	Example Use Case
Genetic Algorithm	HVAC energy optimization	Balancing comfort and energy use
Tabu Search	Supply chain logistics	Minimizing inventory and logistics cost
Linear Programming	Manufacturing scheduling	Maximizing throughput
Reinforcement Learning	Autonomous control	Adaptive process optimization

B. Predictive Modelling and Model Calibration

Predictive modelling is central to the value proposition of digital twins. Techniques include:

Physics-Based Models: Finite element models, equivalent circuit models, and multi-physics simulations for high-fidelity representation.

Data-Driven Models: Machine learning algorithms (e.g., regression, neural networks, ensemble methods) trained on historical and real-time data for forecasting and anomaly detection.

Hybrid Models: Combining physics-based and data-driven approaches to leverage the strengths of both paradigms.

Model Calibration: Techniques such as least squares, gradient descent, genetic algorithms, and Bayesian inference are used to tune model parameters for improved accuracy and robustness.

C. Synchronization and Data Update Strategies

Synchronization between the physical and digital twins is a critical challenge, particularly in dynamic, high-frequency environments. Strategies include:

State-Dependent Synchronization: Updating the digital twin only when significant changes are detected in the physical system, balancing accuracy and computational cost.

Periodic Synchronization: Regularly scheduled updates, suitable for systems with predictable dynamics.

Event-Driven Synchronization: Triggered by specific events or anomalies, enabling rapid response to critical incidents.

Data Quality and Preprocessing: Ensuring data integrity, filtering noise, and aligning timestamps are essential for reliable synchronization and model accuracy.

VI. SECTORAL APPLICATIONS

A. Healthcare

1. Patient-in-Silico and AI Integration: Digital twins in healthcare enable the creation of patient-specific virtual models-patient-in-silico-that integrate data from electronic health records (EHRs), wearable devices, imaging, and genomics. AI algorithms continuously update these models, enabling:

Personalized Treatment Planning: Simulation of treatment scenarios, drug response, and surgical outcomes.

Predictive Diagnostics: Early detection of disease progression and risk factors.

Remote Monitoring: Real-time tracking of patient health and adaptive intervention.

Fig 2: Patient-in-Silico Model with AI Integration in Healthcare DTs

2. Methodologies and Case Studies

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12255

- AI-Driven Predictive Analytics: Machine learning models forecast disease onset, treatment response, and adverse events.
- **Simulation-Based Clinical Trials:** In silico trials reduce the need for animal and human testing, accelerating innovation and reducing costs.
- Integration with Healthcare Infrastructure: Seamless interoperability with hospital information systems, regulatory compliance, and data privacy are critical challenges.
- 3. *Theoretical Foundations*: The theoretical basis for healthcare DTs lies in systems biology, computational modelling, and AI-driven data fusion. The integration of mechanistic models with AI enhances interpretability and clinical trust.

B. Agriculture

- 1. Precision Farming and Digital Twin Examples: Digital twins in agriculture enable precision farming by integrating data from soil sensors, weather stations, drones, and satellite imagery. Applications include:
- Crop Yield Prediction: AI-driven models forecast yields with high accuracy, enabling optimized resource allocation.
- Irrigation and Fertilization Optimization: Scenario-based simulations reduce water and fertilizer use while increasing yields.
- Pest and Disease Management: Early warning systems and scenario analysis enable proactive intervention.

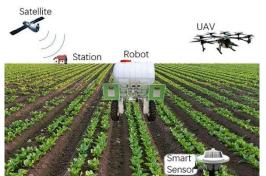


Fig 3: Digital Twin Framework for Precision Agriculture

2. Methodologies and Case Studies

- **Sensor Fusion:** Integration of multi-modal data (e.g., soil moisture, temperature, drone imagery) for robust decision-making.
- AI-Driven Simulations: Machine learning models continuously learn from new data, improving prediction accuracy over time.
- Cloud-Based Platforms: Centralized data storage and analytics enable scalable, collaborative farm management.
- **3. Theoretical Foundations:** Agricultural DTs draw on systems modelling, control theory, and AI for dynamic optimization of complex, heterogeneous environments.

C. Electric Vehicles

1. DT for Battery and Powertrain Management

Digital twins are revolutionizing electric vehicle (EV) design, operation, and lifecycle management. Key applications include:

- **Battery Health Monitoring:** Real-time state-of-charge (SoC) and state-of-health (SoH) estimation using IoT sensors, cloud analytics, and AI models.
- Thermal Management: Predictive modelling and control of battery temperature for safety and longevity.
- Powertrain Optimization: Simulation and optimization of drivetrain performance, fault detection, and predictive maintenance.

2. Methodologies and Case Studies

- **Physics-Based and Data-Driven Models:** Integration of equivalent circuit models, electrochemical models, and machine learning for accurate SoC/SoH estimation.
- Cloud-Enabled BMS: Real-time data synchronization, predictive analytics, and remote diagnostics via cloud platforms.
- Multi-Objective Optimization: Balancing energy efficiency, thermal management, and battery lifespan using advanced optimization algorithms.

TARJSET

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12255

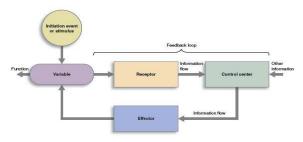


Fig 4: Digital Twin Architecture for EV Battery Management

- **3. Theoretical Foundations:** EV digital twins are grounded in control theory, electrochemical modelling, and AI-driven predictive analytics, enabling closed-loop optimization and adaptive control.
- D. Comparative Table: Digital Twin Applications in Electric Vehicles

Table III: Summary of Digital Twin Applications in Electric Vehicles

Component	Digital Twin Application	Technology Used	Purpose
Battery	Degradation assessment, RUL prediction	PyBaMM, ECM, ML, SDA	Health monitoring, optimization
Power Converter	Real-time modelling	NARX-ANN	Fault detection, prediction
Electric Motor	Fault detection, condition monitoring	Unity 3D, ROS	Short circuit identification
PMSM	Health monitoring, RUL estimation	Cloud-based monitoring	Prognostics
PEMFC	Performance simulation, RUL prediction	ML, 3D multi-physics model	Efficiency, cost reduction

VII. METHODOLOGIES IN INDUSTRY 4.0, CIVIL INFRASTRUCTURE, AND HEALTHCARE

Healthcare: Patient-in-Silico and AI Integration

- **1. Patient-in-Silico Modelling:** Patient-in-silico models simulate individual patient physiology, disease progression, and treatment response, enabling personalized medicine and virtual clinical trials.
- **2. AI Integration:** AI algorithms continuously update patient models, enabling real-time monitoring, predictive diagnostics, and adaptive treatment planning.

VIII. MULTIDISCIPLINARY FRAMEWORK FOR DIGITAL TWIN ECOSYSTEMS

A. Ecosystem of Digital Twins (EDT): The EDT concept envisions a system-of-systems approach, where multiple interconnected digital twins collaborate across spatial and temporal scales to provide insights and analytics beyond the capabilities of individual components.

Table V: Multidisciplinary Framework for Digital Twin Ecosystems

Layer	Description	Technologies Involved
Physical Layer	Sensors, actuators, embedded systems	IoT, WSNs, robotics
Communication Layer	IoT protocols, 5G, edge computing	MQTT, OPC UA, ZigBee, 5G
Data Layer	Data acquisition, preprocessing, storage	Cloud, edge, ETL pipelines
Modelling Layer	Simulation models, AI/ML algorithms	FEM, ML, digital simulation
Application Layer	Decision support, visualization, control	Dashboards, AR/VR, control systems
Governance Layer	Standards, interoperability, security	ISO, IIC, DTC, Gemini Principles

B. Standards and Interoperability: Interoperability is achieved through adherence to international standards (ISO, IEC, IEEE), common data models, and open APIs. The Gemini Principles and Digital Twin Consortium frameworks provide guidance for secure, scalable, and federated DT ecosystems.

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12255

IX. RESULTS AND DISCUSSION

Data Processing Techniques and Pipelines: Robust data processing pipelines are essential for ingesting, transforming, and analysing large volumes of sensor data. ETL architectures, stream processing, and batch analytics enable real-time and historical analysis, supporting predictive maintenance, anomaly detection, and optimization.

Sectoral Results and Case Studies

1. Agriculture

- Composting Facility (Cajamarca, Colombia): DT implementation improved composting efficiency by 10.08% and increased monthly output by 1200 kg, with an ROI of 18,957.6%.
- Crop Yield Prediction: AI-driven DTs achieved up to 91.69% accuracy, reducing water use by 25-40% and fertilizer uses by 30-40%.

2. Manufacturing

- Heating Tunnel Optimization: DT-enabled control achieved 40% energy savings while maintaining performance.
- **Assembly Line (LG Electronics):** Real-time DT improved productivity by 17%, product quality by 70%, and reduced energy consumption by 30%.

3. Electric Vehicles

- **Battery Health Monitoring:** Cloud-enabled DTs provided real-time SoC/SoH estimation with high accuracy, enabling predictive maintenance and extended battery life.
- Thermal Management: DT-based models optimized battery temperature control, improving safety and longevity.

4. Healthcare

• Patient-in-Silico Trials: DTs enabled virtual clinical trials, reducing time and cost, and improving personalized treatment planning.

Challenges and Future Directions

- 1. Data Quality and Integration: Ensuring high-quality, interoperable data across heterogeneous sources remains a significant challenge. Standardization, data governance, and robust preprocessing are essential for reliable DT operation.
- **2. Scalability and Computational Cost:** Scaling DTs to large, complex systems requires efficient architectures, edge-cloud integration, and adaptive synchronization strategies to manage computational load and latency.
- **3. Trust, Security, and Ethics:** Building trust in DT predictions requires rigorous validation, transparency, and explainability. Data privacy, security, and ethical considerations are paramount, especially in healthcare and critical infrastructure.
- **4. Interoperability and Standards:** Adherence to international standards and open frameworks is essential for cross-domain integration and the realization of federated digital twin ecosystems.

X. CONCLUSION

Digital twins represent a paradigm shift in sustainable innovation, enabling real-time monitoring, predictive analytics, and closed-loop optimization across diverse sectors. The integration of IoT, cloud, edge computing, and AI/ML has transformed DTs from static models to dynamic, adaptive systems capable of driving lifecycle intelligence, resource efficiency, and operational resilience. Sectoral applications in healthcare, agriculture, and electric vehicles demonstrate the transformative potential of DTs for personalized medicine, precision farming, and intelligent mobility.

Methodologies from Industry 4.0, civil infrastructure, and healthcare provide robust frameworks for DT implementation, while advances in optimization, predictive modelling, and synchronization strategies ensure high-fidelity, actionable digital representations. The results underscore the critical importance of sensor data quality, synchronization, and robust data processing pipelines in achieving modelling accuracy and sustainable outcomes.

REFERENCES

- [1] Li, X., Niu, W., & Tian, H. (2024). *Application of Digital Twin in Electric Vehicle Powertrain: A Review*. World Electr. Veh. J., 15(5), 208. https://doi.org/10.3390/wevj15050208
- [2] Rane, N. L., & Shirke, S. (2024). Digital Twin for Healthcare, Finance, Agriculture, Retail, Manufacturing, Energy, and Transportation. Deep Science Publishing. https://doi.org/10.70593/978-81-981271-1-2_3
- [3] Al Zami, M. B., Shaon, S., & Nguyen, D. C. (2024). Digital Twin in Industries: A Comprehensive Survey. arXiv:2412.00209v1. https://arxiv.org/html/2412.00209v1

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12255

- [4] Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). *Data-driven smart manufacturing*. Journal of Manufacturing Systems, 48, 157–169.
- [5] Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). *Characterising the Digital Twin: A systematic literature review*. CIRP Journal of Manufacturing Science and Technology, 29, 36–52.
- [6] Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). *Digital Twin: Enabling technologies, challenges and open research*. IEEE Access, 8, 108952–108971.
- [7] Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). *Digital Twin in manufacturing: A categorical literature review and classification*. IFAC-PapersOnLine, 51(11), 1016–1022.
- [8] Boschert, S., & Rosen, R. (2016). Digital Twin-The simulation aspect. In Mechatronic Futures (pp. 59–74). Springer.
- [9] Gabor, T., Belzner, L., Kiermeier, M., Beck, M. T., & Neumann, D. (2016). *A simulation-based architecture for smart cyber-physical systems*. In Proceedings of the 2016 Winter Simulation Conference.
- [10] Bruynseels, K., Santoni de Sio, F., & van den Hoven, J. (2018). Digital Twins in health care: Ethical implications of an emerging engineering paradigm. Frontiers in Genetics, 9, 31.
- [11] Corral-Acero, J., Margara, F., Marciniak, M., et al. (2020). *The 'Digital Twin' to enable the vision of precision cardiology*. European Heart Journal, 41(48), 4556–4564.
- [12] Viceconti, M., Hunter, P., & Hose, R. (2015). *Big data, big knowledge: Big data for personalized healthcare*. IEEE Journal of Biomedical and Health Informatics, 19(4), 1209–1215.
- [13] Grieves, M., & Vickers, J. (2017). Digital Twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems (pp. 85–113). Springer.
- [14] Qi, Q., & Tao, F. (2018). Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access, 6, 3585–3593.
- [15] Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2019). *Digital Twin in Industry: State-of-the-art*. IEEE Transactions on Industrial Informatics, 15(4), 2405–2415.
- [16] Zhang, Y., Wang, J., & Wang, Y. (2021). Digital Twin-based battery management system for electric vehicles. Journal of Energy Storage, 35, 102254.
- [17] Liu, Y., Zhang, Y., Yang, Y., & Wang, J. (2022). Digital Twin for Battery Thermal Management in Electric Vehicles. Applied Thermal Engineering, 201, 117782.
- [18] Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). *Big Data in Smart Farming A review*. Agricultural Systems, 153, 69–80.
- [19] Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). *A review on the practice of big data analysis in agriculture*. Computers and Electronics in Agriculture, 143, 23–37.
- [20] Tao, F., Liu, Y., Gao, J., & Li, B. H. (2018). *Digital Twin-driven product design, manufacturing and service with big data*. The International Journal of Advanced Manufacturing Technology, 94, 3563–3576.