

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12258

Sustainable Solutions for Ground Water Requirements and Its Availability for Various Industries

Vikas Singh¹, Kushal Dave²

Students, CE Department, Geetanjali Institute of Technical Studies, Udaipur, India^{1,2}

Abstract: Groundwater serves as a critical lifeline for numerous industries, yet its unsustainable extraction has led to alarming depletion levels worldwide. This research investigates forward-looking, sustainable solutions to meet groundwater demands while ensuring long-term availability for diverse industrial sectors. The study emphasizes a systems-based approach integrating advanced water-saving technologies, managed aquifer recharge (MAR), and circular water use within industrial processes. It further explores the role of policy frameworks, cross-sectoral water sharing models, and data-driven groundwater monitoring tools in promoting equitable and efficient usage. By analyzing case studies across energy, manufacturing, agriculture-based, and pharmaceutical industries, the research identifies scalable practices that reduce dependency on non-renewable groundwater reserves. The findings underscore the importance of aligning industrial water strategies with regional hydrogeology and climate resilience goals. This paper aims to provide a roadmap for industries and policymakers to shift from exploitative water use patterns to sustainable groundwater stewardship.

Keywords: Groundwater sustainability; industrial water management; managed aquifer recharge (MAR); circular water use; reuse and recycle of water, including zero liquid discharge (ZLD); decision support systems (DSS)

I. INTRODUCTION.

- Groundwater is necessary for industrial, agricultural and household uses.
- UNESCO (2024): Industrial aquifer water withdrawals constitute 40% of industrial freshwater use.
- Industrialization and climate change no longer make extraction viable. India (CGWB 2025): 70% of industrial clusters located in semi-critical or over-exploited areas.
- Main concerns: depletion, salinization, contamination and lower water security.
- Purpose: Develop technology and policy solutions to sustainably meet industrial water needs.

II. TRENDS IN INDUSTRIAL WATER USE AND DEPLETION.

Global Scenario

- Industrial water demand rose by 22% (2015–2024).
- Major users of ground water: energy, manufacturing, textiles, pharmaceuticals.
- Globally, more than 150 of the world's major aquifers are over-pumped.

Indian Context

- The annual withdrawal of groundwater is over ~260 billion cubic meters in India.
- Industry: ≈ 8% of total, but with severe local impact.
- Areas of major impact: Gujarat, Maharashtra, Tamil Nadu, Rajasthan.

Effects:

- Water table decline.
- Heavy metal contamination.
- Soil salinity.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12258

Production disruptions.

III. SUSTAINABLE TECHNOLOGICAL APPROACHES.

❖ Managed Aquifer Recharge (MAR)

Replenishes ground water artificially by means of treated wastewater, rain or runoff.

- MARVI project (2024): 15–20% increment in groundwater in Rajasthan; and Gujarat.
- Recharge basins using treated effluent can be implemented near plants.

❖ Zero Liquid Discharge (ZLD)

- No liquid waste goes out of the plant water is processed and reused.
- Technologies: RO (Reverse Osmosis), MBR (Membrane Bioreactor).
- Provides 95% water recovery. Reduction in losses with IOT monitoring is 30-35%.
- Example: The pharmaceutical industries in Hyderabad achieved 90% reuse.

& Circular Water Economy

- Fosters the reuse of reclaimed water between industries. Example: Gujarat reuse of textile wastewater by cement plants.
- •Conserves 1.5 million cubic meters of groundwater each year.
- Joint treatment, distribution infrastructure urged.

❖ Rainwater Harvesting

- Captures rooftop and surface runoff for industrial reuse.
- Example: Tamil Nadu SIPCOT industrial parks decreased extraction by 25 %.
- MAR used in conjunction with other mar or CR for continuous recharge cycle.

IV. POLICY FRAMEWORKS AND GOVERNANCE

- Government practices control sustainable groundwater use.
- CGWA (2024): Digital permits for groundwater abstraction.
- Annual water audits for industries.
- National Water Policy (2025 draft):
- Principe "Reutilizar y reciclar antes que extraer".
- Incentives for certified water-neutral industries.
- Public-Private Water Partnerships (PPWP): Co-funding mechanisms for MAR and wastewater treatment.
- NAQUIM (2025): GIS and RS are applied to locate recharge zones.

V. DATA-DRIVEN GROUNDWATER MONITORING.

- Technology enables real-time groundwater management.
- Water4Industries Initiative (2025):
- Monitors aguifers with satellite, IoT sensors and AI.
- Predicts contamination and optimizes pumping.
- Instance: The Panipat refinery (Haryana) cut the intake by 18 per cent using an AI-based system.
- AI models reproduce aquifer response to the heterogeneous patterns of industrial withdrawal.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12258

VI. CASE STUDIES BY INDUSTRY SECTOR.

Industry Sector	Location / Region	Sustainable Practice /	Key Outcomes / Impacts	Remarks / Insights
		Approach	_	
Agriculture / Agro-	Saurashtra, Gujarat	Construction of	Increased	Demand rose again over
Processing		~27,000 check-	groundwater storage	time—highlighting the
		dams for rainfall-	during wet years;	need to pair recharge with
		runoff capture and	improved seasonal	water- use efficiency
		storage	water	
		enhancement	availability	
Rural / Small-	Chotuppal Mandal,	Managed Aquifer	Raised water tables;	Demonstrated success of
Scale Farming	Telangana	Recharge (MAR)	expanded irrigated	community participation
		using percolation	area; reduced	and local hydrogeology-
		tanks	pumping	based
			energy	planning
Watershed-Level	Rajasthan & Gujarat		Improved	Scaling across diverse
Management	(MARVI Project)	integrated recharge	groundwater levels	geological conditions
		combined with	and community	remains a challenge
		livelihood	well- being	
7.5		interventions		26.4.4
Manufacturing /	Multiple industrial	Decision Support	Reduced	Model-based evidence
Chemical / Energy	zones (India-wide)	Systems (DSS) and	groundwater	promising, but more
/ Pharmaceutical		Zero Liquid	dependency by 15–	empirical validation
		Discharge (ZLD)	30% in well-	required
		integration	managed facilities	

VII. DISCUSSION.

- Managing groundwater sustainably must combine technology (science), policy, and community engagement.
- Investment in ZLD and MAR systems can reduce long-term costs by 12 to 20 percent of total project cost (FAO, n.d.).
- Recharge through community approach increases compliance and knowledge.
- Key challenges:
- Expensive sophisticated systems of treatment.
- Lack of skilled technical manpower.

Uneven enforcement of regulations.

• Industrial planning for the future must integrate concerns about hydrogeology and resistance to climate change.

VIII. CONCLUSION.

- Industries need to move from depleting groundwater to sustainable management.
- Effective strategies include.
- Managed Aquifer Recharge (MAR).
- Zero Liquid Discharge (ZLD) Wolf trap recycling and industrial ecology.
- AI-based monitoring and prediction tools.
- We must learn from and engage industry, government and communities.
- Sustainable water management of groundwater guarantees productive, environmental and a national security for water over time (Sposito in Water Resour 9:23–49, 2021).

IARJSET

International Advanced Research Journal in Science, Engineering and Technology

International Conference on Interdisciplinary Global Research in Adaptation, Transformation & Engineering

INTEGRATE 2025

Geetanjali Institute of Technical Studies (GITS)

Vol. 12, SPECIAL ISSUE 2, NOVEMBER 2025

DOI: 10.17148/IARJSET/INTEGRATE.2025.12258

REFERENCES

- [1] S. Choudhary, H. Shrimali, and J. Shrimali, "Techno-managerial phases and challenges in development and implementation of smart city Udaipur," in *Proc.* 4th Int. Conf. Emerging Trends in Multi-Disciplinary Research, 2023. [Online]. Available: https://www.researchgate.net/publication/370402952
- [2] K. Poonia, P. Kansara, and S. Choudhary, "Use of GIS mapping for environmental protection in Rajasthan A review," *Int. Adv. Res. J. Sci. Eng. Technol. (IARJSET)*, vol. 10, no. 5, pp. 812–814, 2023.
- [3] S. Choudhary, M. Hasan, M. Suthar, A. Saraswat, and H. Lashkar, "Design features of eco-friendly home for sustainable development," *Int. J. Innovative Res. Electr. Electro. Instrum. Control Eng. (IJIREEICE)*, vol. 10, no. 1, pp. 88–93, Jan. 2022.
- [4] S. Choudhary, H. Shrimali, and J. Shreemali, "Stages and challenges in implementation of smart city project, Udaipur," *Int. J. Innovative Sci. Res. Technol.* (IJISRT), vol. 8, no. 5, pp. 2451–2456, May 2023.
- [5] S. Choudhary, S. Chouhan, M. Jain, K. Panchal, and Y. Bhardwaj, "Development of rain water harvesting system through national highway profiles by using GIS and field survey," SSRN Electron. J., 2019, doi: 10.2139/ssrn.3348303.
- [6] W. M. Alley, "Sustainability of ground-water resources," U.S. Geological Survey Circular 1186, 1999.
- [7] H. E. Dahlke, G. T. LaHue, and M. R. L. Mautner, "Managed aquifer recharge as a tool to enhance sustainable groundwater management in California: examples from field and modeling studies," in *Advanced Tools for Integrated Water Resources Management*, 2018, ch. (book chapter).
- [8] J. Guo, "Managed aquifer recharge (MAR) applications in China review of achievements and challenges," GWSE (or relevant journal), 2022.
- [9] "Groundwater aquifers recharge with treated wastewater," Food and Agriculture Organization (FAO) Outreach / Water Scarcity blog, 28 May 2025. [Online]. Available (FAO article on recharge using treated wastewater).
- [10] A. K. Seif et al., "Assessing groundwater artificial recharge suitability using GIS/RS and multi-criteria techniques a case study," *Environmental Earth Sciences* / Springer article, 2025.