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Abstract: Neuromorphic computing signals a paradigmatic shift toward processing, inspired by biological neural networks for 

efficient energy usage [1],[3],[10], adaptability, and learning information in real time. Instead of synchronous, clock-driven 

architectures that normally characterize the design of most traditional digital systems with separated memory and processing, 

neuromorphic systems employ asynchronous, event-driven SNNs [2], which integrate computation and memory. This significantly 

reduces the energy bottlenecks and allows low-power, scalable architectures. SNNs and event-driven frameworks are also 

expected to be indispensable components in ISAC, enabling efficient, adaptive information exchange in wireless networks, radar, 

and IoT or edge computing applications by allowing context- aware real-time processing with minimum redundant computation.  

 

This review provides an overview of state-of-the-art neuromorphic architectures, sensors, and communication models, focusing 

on recent advances, hardware implementations, applications, and future challenges for the creation of truly intelligent and power-

efficient communication systems. 

 

Index terms: Neuromorphic Computing, Spiking Neural Networks (SNNs), Event-Driven Architecture Integrated Sensing and 

Communications (ISAC), Low Power Energy Efficiency, Neuromorphic Radar and Wireless Sensing, Edge Computing and IoT 

Applications, Brain-Inspired Communication Systems, Spike-Timing Dependent Plasticity (STDP), 

 

I. INTRODUCTION 

 

Neuromorphic communication is inspired by how brains works and how machines process and exchange information in a way 

that Traditional computers keep memory and processing separate and run everything in a cycle [1],[5]. Neuromorphic systems 

throw this away, bringing these pieces together and copying nature's approach. The payoff is huge—way less power consumption 

and incredible flexibility when environments change. This matters a lot for battery- powered gadgets, mobile tools, and sensor 

networks scattered everywhere. The real magic comes from spiking neural networks (SNNs). Instead of smooth signals like 

ordinary AI, SNNs send bursts of electrical pulses, just like real neurons do. They only spring to life when something worth 

paying attention to happens, making them incredibly economical. These matters for wireless systems, radars, and edge devices 

because they desperately need instant responses and smart resource management. Neuromorphic systems solve this by tightening 

connections and cutting down pointless data. Learning happens through spike-timing dependent plasticity (STDP), where 

connection strengths shift based on signal timing. This lets systems get smarter and more capable as they work. Our review 

covers the fundamentals, latest breakthroughs in hardware and sensors, real applications from cities to robots, and real obstacles 

researchers face today. The research performed in this paper makes a systematic review of the Biological and Computational 

Foundation, Hardware Architecture, and Integrated Sensing and Communication (ISAC) about Neuromorphic Communication. 

To analyses and compare existing work about the development of Neuromorphic communication, the following data and figures 

are as follows. 

                        

II. BIOLOGICAL AND COMPUTATIONAL FOUNDATION 
 

a. History of Biological and Computational Foundation 

The paper explores the use of Neuromorphic Computing for low power edge inference within the IoT. Carver Mead introduces 

the concept in 1980s to design an electronic device that mimic the structure and function of biological neural network [10]. In 

early 2000s the concept of computational neuroscience and neuromorphic hardware was introduced model like HODGKIN-

HUXLEY, IZHIKEVICH AND LEAKY INTEGRATE AND FIRE (LIF) became standard neuron model linking with which in 

2010s Neuromorphic chips emerged (e.g. IBM TrueNorth, Intel Loihi) demonstrated brain like parallel processing. Around this 

time, researchers began applying neuromorphic vision to communication system focusing on low latency, low power and 

adaptive communication. In late 2010s – Early 2020s the field evolved into Neuromorphic communication. In Modern Era 

Neuromorphic communication principle is applied in 5G/6G network, (ISAC), Adaptive modulation and coding using SNNs. 
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b. Biological Basis of Neuromorphic Communication 

Neuromorphic Communication is directly inspired by human brain process and transmit the information. At the microcircuit 

level, neuronal cells are morphologically arranged in layers with various connectivity motifs. Using “analysis by synthesis” 

approach, engineers enhance electronic circuit through brain microcircuit. Mixed-signal implementations are more realistic than 

computer simulations or purely digital implementations [2][3]. Owing to the thermal noise in silicon, analog neuron circuits 

inherently generate stochastic spikes, similar to neuronal cells, where noise from ion channels and intrinsic neurotransmitter 

release results in stochastic spiking. His aim was to transfer this concept into electronic device which further demanded it for 

communication purpose. 

c. Computational Models and Architecture 

The SNN mimics biological neurons that independently process and forward spikes. a biologically inspired paradigm known as 

neuromorphic computing has been developed that behaves in a manner similar to the brain in both being parallel and being event-

based. Neuromorphic processors use Spiking Neural (SNNs), where the transmission of information is spike-related for advanced 

exchange. This is in contrast to conventional processors which consume energy on each clock cycle whether input tasks change or 

do not change, making neuromorphic systems consume only power when an event occurs which in turn makes them far more 

energy give a level as well as allowing a neuromorphic system to execute a task instantly and in real-time even with very limited 

number of resources. With this asynchronous working mechanism, only a small subset of neurons is activated during inference. In 

essence, an SNN is inherently efficient in terms of computation. 
 

Figure .1 figure .2 

 

Spiking neural networks (SNNs) have gained attention to their energy efficiency and low latency [1][2][3][8]. There are 

neuromorphic chips, such as Loihi and TrueNorth on which SNN can be deployed. Spike-timing-dependent plasticity (STDP) is 

an unsupervised brain-like learning rule implemented in many SNNs and neuromorphic chips. The performance of STDP 

learning in neuromorphic chips deteriorates because the resolution of synaptic efficacy in such chips is generally restricted to 6 

bits or less. SNN mimics biological neurons that independently process and forward spikes. With this asynchronous working 

mechanism, only a small subset of neurons is activated during inference. In essence, an SNN is inherently efficient in terms of 

computation. an additional encoding step, such as rate-based coding and Poisson’s code, is necessary for frame-based input before 

forward propagation in the SNN. One approach to train as SNN is through ANN-to-SNN conversion, which leverages the mature 

training regime of the ANN to first train a high- accuracy ANN and then convert it into an SNN. The proposed method has led to 

research focused on achieving near-zero conversion loss. Another methodology involves the use of backpropagation in SNN 

training. Due to the non-differentiable nature of spiking, this approach requires the deployment of a surrogate gradient. 

 

III. NEUROMORPHIC HARDWARE ARCHITECTURE 
 

a. Chip Design and Event-Driven Hardware 

Neuromorphic Hardware architectures are designed to emulate the biological principle of the human brain through event driven 

and parallel computation. Several notable hardware platforms have been developed over the past decade. IBM’S TrueNorth chip 

mimics the structure and function of the human brain; it contains 4096 cores, each simulating 256 neurons and 256 million synapses 

[7]. This chip operates on event driven and non von Neumann architecture, where computation and memory are collocated to 

reduce power consumption (around 65mW). Intel’s Loihi future advance this concept with programmable spiking neurons which 

combine many asynchronous Neurocore’s, to support real time, lower power event computation, Loihi system have demonstrated 

large energy and speed gain on select edge and optimization workload. SpiNNaker platform is designed for real time execution, 

large scale simulation of spiking neural network. Its building block is an 18- core ARM968 SoC. Many such chips are tiled in 

rack to form the million-core machine capable of simulating brain scale network. It routes spikes as small multicast packets 

through a custom packet switched network and runs PyNN models via the sPyNNaker/SpiNNTool toolchain. 
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Platform Core Type Learning Support Processing Model Application Suitability 

Intel Loihi Digital (128 cores) On – chip STDP 

(online) 

Event – driven, 

asynchronous 

Adaptive edge-AI, real- time 

learning 

IBM TrueNorth Digital (1M neurons) None (inference only) Synchronous, fixed 

routing 

Static low- power inference 

task 

SpiNNaker (4C) Digital (ARM 9 

cores) 

Software- based 

(offline) 

Packet – based, 

parallel SNN sim 

Flexible simulation, research 

system 

STM32 Cortex- 

M7(MCU) 

Von Neumann (ANN- 

based) 

No Frame – based 

feedforward ANN 

General purpose low power 

edge AI 

 

b. Analog and Mixed- Signal Approaches 

Neuromorphic architecture also explores analog and mixed signal approaches to closely replicate biological neuron and synapse 

behavior. Analog design implement neurons/synapse 

dynamic as continuous time/subthreshold circuits with very low power and high density, typical architecture pattern compute in 

analog (dendrite/synapse circuit), encode spikes as digital address event send them across a packetized/event network and handle 

control in the digital domain. Mixed signal system combines analog neuron/synapse computation with digital event routing and 

control, mixing in digital event-based communication gives scalable, asynchronous interconnect and configurability 

 

 

 

 

 

 

 

 

 

 

 

 

 

c. Focus on Low Power and Energy Efficiency 

The central feature of this system is energy efficiency achieved through event driven signaling where computation occur only 

upon neural spike event drastically reducing power consumption. Comparative studies shows that chips like loihi can achieve up 

to thousand-fold improvement in energy efficiency over conventional CPU- based implementation, making them highly suitable 

for low latency. 

 

IV. INTEGRATED SENSING AND COMMUNICATION (ISAC) 

 

Neuromorphic principle in ISAC aims to merge the function of sensing and date transmission into a unified framework, reducing 

system redundancy and energy use [5]. ISAC system performs sensing and data exchange simultaneously, improving latency and 

power efficiency. Neuromorphic principle in ISAC aims to merge the function of sensing and date transmission into a unified 

framework, reducing system redundancy and energy use. Neuromorphic principle such as spike-based computation, local 

learning and event driven processing enables this integration efficiently. ISAC system performs sensing and data exchange 

simultaneously, improving latency and power efficiency. Traditional communication systems use continuous or periodic signal 

exchange, which wastes bandwidth and power. Neuromorphic ISAC adopts event driven communication where information is 

transmitted only when an event (spike or sensor change) detected similar to biological neurons mechanism. This model allows 

asynchronous, low latency data transfer and support distributed intelligence making it ideal for edge computing, autonomous 

system and IoT network. 

 

V. NEUROMORPHIC RADAR AND WIRELESS SENSING 

 

a. Introduction to Neuromorphic Radar Systems 

Radar sensors are becoming common in IoT devices, often use a lot of power, which is a problem for devices which are 

dependent on battery and needed for a longer period of time. Many of these systems also use artificial neural networks (ANNs) to 

analyse signals which require continuous processing and frequent data transfers between the processor and memory. Radar-based 

IoT devices often face challenges in keeping power consumption low. Recent advances in neuromorphic engineering have in 
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spired spiking neural networks (SNNs) and dedicated neuromorphic circuits that better approach the efficiency of sensory signal 

processing in the brain. 

Most current SNN-based radar systems don’t use a complete neuromorphic hardware design. Their front-end circuits still work like 

traditional radars, using much more power—often in the tens or hundreds of milliwatts—while the neuromorphic processing 

itself only uses a few hundred microwatts. This paper proposes NeuroRadar—a fully neuromorphic radar system. It takes 

inspiration from biological sensing, producing event-driven spikes only when motion is detected instead of continuously sending 

data. NeuroRadar integrates the sensing and spiking computation together in one architecture for lower power use and faster, 

more efficient sensing. 

b. Hardware Architectures for Neuromorphic Radar 

NeuroRadar consists of three main components: sensor front end, spike encoders, and spike processors. The sensor front end 

senses ambient motion, and the output signals are converted into spike sequences (referred to as spike trains) by the spike 

encoders. These spike trains are then directly processed by the energy-efficient SNNs. 

 

Sensor front-end: The NEURORADAR front-end emits a weak, continuous-wave single-tone signal in the 0.3∼3 GHz ultra-high 

frequency (UHF) band. The core component is a SILO whose frequency is modulated by the motion of the surrounding targets 

[90]. By demodulating this frequency shift, the system generates a base band signal that carries the motion information. We 

further introduce a sensor array design that combines multiple SILOs with different operating frequencies to provide richer 

spatiotemporal information 

Spike encoder. The spike encoding circuit takes the baseband signal produced by the front-end and converts the signal into spike 

trains following the LIF model [5]. Given that the input is AC-coupled and the signal comprises both positive and negative parts, 

two spike encoders are jointly employed to encode each channel of the radar sensor. The spike encoding circuits operate entirely 

in an event-driven manner; they only generate spikes when the sensor front-end detects motion and stays idle otherwise. 

 

Spike processor: The spike encoders interface directly with the neuromorphic computing circuits, enabling all signals to be pro 

cessed within the spike domain. Our approach involves designing multi-layer convolutional SNNs to process the multi-channel 

spike chains from the NEURORADAR sensor array. These SNNs execute pattern recognition and regression tasks according to 

the application requirements. 

 

c. Event-Driven Wireless Sensing with Spiking Neural Networks 

Spiking neural networks (SNNs) mimics biological neurons that independently process and forward spikes. With this 

asynchronous working mechanism, only a small subset of neurons is activated during inference. In essence, an SNN is inherently 

efficient in terms of computation. Biological neurons exchange information through the generation and transmission of electrical 

impulses, often referred to as spikes. These neurons are connected to one another through specialized junctions known as 

synapses. A neuron emits a spike when the incoming signals, gathered together, elevate its membrane potential beyond a specific 

threshold, after which it resets. This mechanism is typically modelled using the Leaky-Integrate-and-Fire (LIF) 

framework.[15][19]. In conventional artificial neural networks (ANNs), information is represented through continuous real-

valued activations, where functions like ReLU approximate the firing rates of biological neurons. [15][19] 
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VI. EDGE COMPUTING AND IOT INTEGRATION 

 

These systems, stimulated by biological processes, let sensors process data at the edge with very little power, which cuts down on 

both latency and bandwidth needs. Neuromorphic sensors work like the human sensory system by being able to detect and process 

events in real time. This method makes it possible to keep an eye on things all the time and make decisions that change based on 

the situation in a number of IoT applications, such as environmental sensing, industrial automation, and healthcare monitoring. 

Neuromorphic computing helps make human-robot interaction systems more advanced, which makes it easier for people and 

machines to work together. 

 

a. Important Advantages of Neuromorphic Chips 

• Because of their event-driven architecture, neuromorphic chips use only 1% to 10% of the power that traditional processors 

do.[7][8] 

• Event-driven processing: neuromorphic chips only turn on when they need to, just like a motion sensor turns on a light when 

it sees movement. This cuts down on energy use that isn't needed. 

• Example: IBM’s TrueNorth chip reduced energy consumption by 98% in DARPA’s autonomous robotics trials by 

eliminating redundant data transfers 

b. Real time and on device processing: The study of IJFMR show that AI Neuromorphic architectures are more than 

capable of real-time processing because they emulate the parallel, asynchronous dynamics of biological neurons. The results of 

Lin et al. (2021) show that a reduction of more than 50 percent in inference latency of ultra-small edge accelerators with 

neuromorphic integration compared to conventional CNN accelerators achieves real-time vision recognition. 

Example: Prophesee’s event-based vision sensors, when paired with Sony’s neuromorphic chips, detect pedestrians 20ms faster 

than conventional frame-based cameras—a critical advantage for autonomous vehicles navigating urban environments.[6] 

c. Market availability or practical applications: 
 

Company Flagship product Commercial launch Product deployment 

Brainchip Akida NSoC 2024(pre -orders) Edge ai box 

Intel Loihi 2 2021(announce) Sandia labs hala point 

synSense Speck 2023 Vision processor demo 

kit 

Prophesee GenX320 sensor 2023 Edge ai devices 

 

VII. LEARNING AND ADAPTATION MECHANISMS 

 

spike time-dependent plasticity (STDP) is the most well-known learning rule for unsupervised learning in the brain, which is 

implemented in many neuromorphic systems. The STDP algorithm modulates the weight of a synapse based on the relative timing 

of the pre- and post-synaptic spikes. The weight of a synapse will be increased if a pre-synaptic spike arrives several milliseconds 

before the post-synaptic spike fires. On the other hand, the weight will be decreased in the case that the post-synaptic spike fires 

earlier than the arrival of a pre-synaptic spike by several milliseconds. The amount and direction of alteration of the weight are 

determined by the time between the arrival of the pre- and post-synaptic [5] spike [2][3][4][13][14]. 

STDP-based unsupervised learning has been successful in tasks such as pattern detection (Masquelier et al., 2008, 2009) and 

image classification (Diehl and Cook, 2015), achieving high performance in simulation.  

 

a. Adaptive STDP learning: When using the STDP learning, the network dynamics evolve as follows. The spike inputs 

received via synapses cause the neuron to spike. If the input spike (presynaptic spike) activating a synapse arrives before the 

postsynaptic spike (if the synapse contributes to the spiking of the neuron), the value of its synaptic weight is potentiated. On the 

other hand, if the input spike (presynaptic spike) activating the synapse arrives after the postsynaptic spike (if the synapse does 

not contribute to the spiking of the neuron), the value of its synaptic weight is depressed. The closer the pre-and the postsynaptic 

spikes are to each other, the higher is the value of potentiation or depression SNNs that use STDP for processing automotive radar 

are very adaptable to changing traffic conditions. They can still track targets accurately in situations where the traffic is not 

stationary, and they use orders of magnitude less power than traditional methods. Like this, memristor-based adaptive 

neuromorphic systems let autonomous systems work in uncertain wireless environments switch contexts quickly without help 

from people. These systems can update their awareness in about 1 millisecond.[2][3] 
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VIII. CHALLENGES AND FUTURE DIRECTIONS 

 

Neuromorphic communication is hugely promising, but several key challenges remain that must be overcome before it can 

achieve widespread commercial deployment. Among these, scalability poses one of the biggest hurdles: building large, robust 

networks that retain efficiency in their functionality as size and complexity increase is non-trivial. Integration with existing digital 

communication technologies in turn poses a major technical barrier, as neuromorphic hardware and protocols diverge 

significantly from mainstream approaches. Because hardware parts can vary, some devices aren’t always reliable, and there aren’t 

any common standards yet, it becomes hard to build and program these systems on a large scale [9]. Another important point is 

that the current learning algorithms, like STDP, for SNNs need to be modified and optimized for real-world heterogeneous data 

streams.[5] 

 

On the positive side, continuous efforts are being devoted to optimizing algorithm-hardware co-design, hybrid analog- digital 

circuits, and adaptive event-driven architectures in order to mitigate these bottlenecks. Some promising trends involve the 

employment of memristive devices for efficient synaptic implementation, neuromorphic chip adoption in edge AI and IoT, and 

exploring ASICs exclusively devoted to low-power communications. As more and more commercial players start investing in this 

domain, along with demonstration projects at validating practical use cases, neuromorphic communication is on a promising 

trajectory toward mainstream adoption. 

 

IX. CONCLUSION 
 

Neuromorphic communication at its core is redefining how intelligent machines sense, process, and share information by 

combining biology-inspired principles with state-of-the-art engineering. The field represents an unprecedented approach toward 

ultra-low-power, adaptable, and effective data exchange that is essential for future IoT, smart infrastructure, and next-generation 

wireless networks. Even though there are still many technical hurdles when it comes to scaling, integration, and creating common 

standards, the rapid progress in research and emerging hardware shows a lot of promise. As technology has evolved, 

neuromorphic communication has the potential to completely transform how intelligent and energy-efficient communication 

systems function.[7] [8] [9] 
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