

International Advanced Research Journal in Science, Engineering and Technology
Impact Factor 8.311

Refereed journal

Vol. 12, Issue 11, November 2025

DOI: 10.17148/IARJSET.2025.121127

A Comprehensive Survey on Emerging Innovations in Organic Agriculture

Roopa K Murthy¹, Aliya Farheen², Ananya R³, Bhavani⁴, Likhitha S⁵

Assistant Professor, Computer Science and Design K S Institute of Technology, Bengaluru, India¹ Students, Computer Science and Design K S Institute of Technology, Bengaluru, India²⁻⁵

Abstract: Organic farming aims for human welfare without harming the environment and follows the principles of health, ecology, fairness and care for all, including soil. Organic farming is an agricultural production system that avoids the use of pesticides and fertilizers. It emphasizes the use of natural inputs ensuring that nature stays clean and rich. It promotes and enhances agro-ecosystem health, including biodiversity and biological cycles. The contemporary definition of organic agriculture combines indigenous wisdom with scientific progress and technology. It emphasizes a method of food production that is sustainable and environmentally friendly, focusing on the conservation of natural resources and pollution reduction.

Organic agriculture includes not only the production of crops, but also the efficient management of crops post-harvest, proper storage, and marketing development to maintain product quality and provide farmers with profitable options to earn a living. This study reviews the key elements, challenges, and advantages of organic agriculture enhancing soil fertility, improving food quality, and mitigating greenhouse gas emissions. It will further discuss newly emerging ideas like the bioeconomy, waste recycling, and the soft systems methodology as a potential means to manage the future sustainability of agriculture. For these reasons, organic agriculture not only provides nutrition food it also engages in the stewardship of the environment and the economic well-being of rural communities.

Keywords: Sustainable Agriculture, Long Short-Term Memory (LSTM), ICT in Agriculture, Data Mining, SWOT, Digital Marketing

I. INTRODUCTION

Organic agriculture provides an alternative to chemical farming while emphasizing health-oriented food production principles. Technological advances, such as soilless farming methods like hydroponics, aquaponics, and aeroponics, provides the efficient cultivation in-soil with minimalist water and controlled nutrients. Computational technologies and ICT(Information Technology) based solutions will optimize the resources used for crop growth and improve efficiency along with the ecological balance. Digital marketing as well as smart farming strategies can also assist farmers in reaching consumers and promoting organic products to build an economical market. Each of these digital innovations builds a new, technology-forward route for organic farming that supports sustainability and profitability.

The interest in organic products is growing as people become increasingly aware of their health and environmental effects. However, organic farmers must overcome from disease management, fluctuating yields and accessing retailers or markets. Organic Farm utilizes Artificial Intelligence (AI) and Machine Learning (ML) technologies to assist farmers throughout the entire farming cycle from crop type selection to the selling process.

Next, it develops an IoT smart system for remote management of an organic farm while promoting organic agriculture as an environmental friendly and sustainable method alternative to chemical agriculture it also analyses the United Arab Emirates organic food market focusing on a SWO-4Ps market strategy utilizing normal prices and fresh produce in the end it concludes by reviewing the use of data mining in the organic agro sector.

DOI: 10.17148/IARJSET.2025.121127

II. LITERATURE REVIEW

SL	YEAR OF	PROJECT TITLE	DESCRIPTION	
NO.	PUBLICATI ON			
1.		OrgoFarm : Harnessing Artificial Intelligence and Machine Learning to Revolutionize Organic Farming and Direct-to- Consumer Marketing	OrgoFarm is an Artificial Intelligence (AI) platform that improves organic farming through smart, datadriven solutions. It features a Farmers Guide based on Flask offering best practices in organic farming, a marketplace that connects farmers and consumers directly for fair pricing, and effective AI models that diagnose crop diseases (ResNet50 with an accuracy of 99.27%) and predict crop yields (LSTM, which reduces the root mean square error from 1.8 to 0.35). The platform also has an AI Virtual Assistant that gives farmers recommendations in real-time, and a discussion forum where farmers can learn from each other. OrgoFarm is built on a Flask–MongoDB architecture with rest APIs and Machine Learning models hosted in the cloud. The assignation increased by 20%, lowered consumer prices by 15%, and increased farmer profits by 10%. By leveraging AI, Machine Learning, and digital tools, OrgoFarm promotes sustainable and profitable organic farming, and plans by introducing IoT and blockchain technology to provide more transparency and efficiency in the process.[1].	
2.	2024[2]	A Soft System Approach for Smart Agriculture: The use of Digital Marketing in Organic Farm Business	The organic farming sector faces a critical challenge due to ineffective marketing channels while reaching customers, which may mean a loss of income. Digital marketing technologies are posited to be the solution, though their use is uninformed by price differentials to non-organic produce and a lack of applied research, particularly in Indonesia. To investigate, the research methodology first applies the Customers, Actors, Transformation process, World view, Owners and Environmental constraints framework to identify and define important elements of the troubled system. This then leads to developing a more exhaustive conceptual model of activities, which is compared to a physical system for validation purposes. As an example of this study, the Okiagaru group of young Indonesian farmers recognized by the government as growers of sustainably cultivated Japanese vegetables, aimed at restaurants and supermarkets, is used as a case study.[2]	
3.	2024[3]	Internet of Things Technology for Salad Organics Vegetable Smart Farming System with Promoting to Healthy Food Career Entrepreneurs	In agri-businesses, the implementation of IoT (Internet of Things) systems has created the convergence of technology with traditional farming by incorporating smart sensors to maintain temperature, humidity, and soil moisture levels in real time that leads to decision making with regard to actions taken in the field, thus minimizing water loss from crops. Furthermore, the smart farming	

DOI: 10.17148/IARJSET.2025.121127

		DOI: 10.17 146/IAI	
			system implements four automated switches which are coupled with DHT22 temperature and humidity sensors to manage watering, misting, and nutrient spraying which can be both automated and operated remotely with the eWelink mobile application. The eWelink mobile application further allows the application to set timers and schedules, as well as change and adjust settings in real time with a demonstrated ease of getting controls set correctly to maintain ideal environmental conditions inside the greenhouse. To demonstrate the application use in organic salad farming, smart farming was successfully introduced to 20 farmers in the province of Nakhon Sawan, and demonstrated overall improvements in crop quality, volume of crop yield, farmer profit, and reduction in labor costs. Additionally, farmers tested the experimental procedure and recorded an average rating of satisfaction of 4.23 out of 5, as well as an ability to maintain temperature levels consistently below 32° Celsius. Overall, the research demonstrated that IoT (Internet of Things) smart farming can improve sustainability, productivity, and entrepreneurial development, thus ensuring environmental sustainability while at the same time providing economically feasible agri-business for future generations.[3]
4.	2022[4]	UAE Organic food market	The study analyzes the UAE organic food market using SWOT and 4Ps frameworks, revealing that rising health and environmental awareness supported by government initiatives and 34 certified farms producing diverse crops. Strengths include strong farmer commitment and institutional support, while weaknesses involve limited market reach and lack of formal contracts. Opportunities arise from health-conscious consumers and an expanding middle class, but challenges persist with low youth interest, harsh climate, and storage issues. Among 120 marketing combinations tested, the most cost-effective strategy was normal pricing, farm-based sourcing, social media promotion emphasis on product quality and freshness. The study concludes that social media is the most efficient marketing tool, and integrating SWOT with 4Ps offers a solid foundation for sustainable growth in the UAE organic food sector.[4]
5.	2022[5]	Agro Data Towards Agriculture Using Data Mining	It presents an encompassing review of several topics related to how data mining techniques can advance productivity and sustainability in organic farming. These topics include thorough investigations into soil properties and health, rainfall prediction models and pest detection, as well as crop recommendation systems for organic farmers, comparisons of organic and inorganic farming systems. The study provides examples of the analysis of soil classification using data-driven techniques such as Decision Tree, Bayesian models, or Deep Neural Networks, weather

DOI: 10.17148/IARJSET.2025.121127

		DOI: 10.17 146/IAI	
			forecasting, or crop selection using similar techniques in an effort to inform agricultural decisions. The paper also reviews organic agricultural practices (on both operations and individual farms) in different places around the world (e.g., India, Thailand, Nepal, Taiwan, and elsewhere) discussing the environmental, social, and economic implications of those practices. The authors emphasize that thresh data mining that is integrated with organic farming outcome improvements ranging from food quality to sustainability, can be achieved and that the reliance on synthetic chemicals or fertilizers can be reduced (or eliminated), resulting in reduced harm to the environment. In terms of future recommendations, the authors of this study suggest expanding the datasets under which comparisons are made to validate and increase the predictive accuracy of data-driven models and as a significant findings are achieved, a more advanced technology should be adopted, that uses less human intervention, for the wider, real-time application of organic agriculture in the future.[5]
6.	2017[6]	Computational Perspective on Organic Farming	This review, argues for a transition to organic farming as a viable sustainable agriculture model while minimizing the adverse environmental and health effects of chemical fertilizers. The main objective is the significant role of Information and Communication Technologies (ICT) and computer algorithms in modern organic farming practices. Some of the technology solutions reviewed include softwares namely ENVIRO-GRO and the FERTIAGRIBIO model for managing nitrogen fertilizer, systems i,e Global Positioning Systems (GPS/GIS) and Wireless Sensor Networks (WSN), to collaboration and optimize fertilizer applications, as well as Artificial Intelligence (AI) techniques (e.g., Artificial Neural Networks (ANN) and Fuzzy Logic) for advancing soil classification processes. These tools ultimately lead farmers to assess soil nutritional, nutrient values, and deploy optimization algorithms to manage chemical fertilizers precisely, while reducing their application.[6]
7.	2016[7]	Farming Practices: Controlled Crop	The research offers innovative techniques in soilless and smart farming for organic agriculture with a focus on sustainability. Hydroponics entails growing plants in nutrient-laden water using PVC pipes and sensors, reduces water consumption by up to 95%-99%, and enables indoor urban organic farming. Aquaponics utilizes Hydroponic principles in addition to fish farming, recycles 90% of the water used in cultivated crops an developing as a self-sustaining ecological system. Aeroponics is responsible for growing crops in nutrient mist sprayed on plant roots suspended in air (maximum with zero soil), waste up to 95% of water, ensures rapid, healthy, and disease-free where the practice derives from NASA (space studies). Indoor organic farming employs LED light technology (independent of natural sunlight and in-growth

Impact Factor 8.311

Reer-reviewed & Refereed journal

Vol. 12, Issue 11, November 2025

DOI: 10.17148/IARJSET.2025.121127

				structures) allows organic crop growing (pesticide- free) in small urban vegetable spaces. Lastly, incorporates technology beyond traditional organic farming, using automated-sensor-based irrigation with sprinklers pipe and drones for the monitored management in translation in water and potential nutrient resources.[7]
8.	2012[8]	Organic Technology Environment Agriculture	for Friendly	The article discusses the need for sustainable agricultural practices as the modern agricultural model reliant on chemical fertilizers and pesticides which causes severe damage to the environment. The article embraces organic farming as a viable alternative employing technology that supports productivity while preserving ecosystems, providing cost-effective input, and producing more healthful food. A compliment of case studies supports the evidence of increasing adoption of organic farming in India driven with government "Intervention" through policy, certification programs, and emerging organic product markets. The report finds evidence of both strengths and weaknesses associated with organic farming in India using a SWOT analysis. Strengths improved soil fertility, lowered costs, and substantial export potential. Weaknesses lower initial yields and a limited pool of farmer knowledge to inform leadership on suitable new technology. Opportunities rising demand in the global ecosystem market to promote eco-friendly products. Threats increased bureaucracy from complicated certification processes, and poor consumer awareness of organic products. The authors conclude that organic farming does not only put life back into farming but will provide economic viability, environmental sustainability, and soldiers on health. The authors call for policy support and propose a national movement to promote organic farming as the future of sustainable agriculture in India.[8]

III. CONCLUSION

Based on the survey, the future of organic farming lies in its fusion with advanced computational technologies to enhance sustainability and profitability. This modern approach combines traditional organic principles of health and ecology with scientific innovation. Key technological advancements identified include soilless cultivation methods like hydroponics, aquaponics, and aeroponics, which can reduce water consumption by up to 99%. Simultaneously, Internet of Things (IoT) smart systems are enabling real-time, remote management of farm condition improving crop quality and yield. Artificial Intelligence (AI) and Machine Learning (ML) are also plays a major role, with platforms like "OrgoFarm" demonstrating 99.27% accuracy in crop disease diagnosis and significantly improving yield predictions, while data mining helps optimize decisions regarding soil health and crop selection.

This technological integration directly addresses organic farming's traditional economic and market-access challenges. Digital marketing is highlighted as a critical solution for farmers to reach consumers effectively and identifying social media as a highly efficient promotional tool. Market analyses, such as the SWOT-4Ps framework, are being used to develop cost-effective strategies centered on product freshness and normal pricing. Furthermore, AI-driven platforms that create direct-to-consumer marketplaces have proven successful, simultaneously lowering consumer prices by 15% and increasing farmer profits by 10%. In essence, it shows that leveraging AI, IoT, and data analytics is key in making organic agriculture more efficient, transparent, and economically viable.

Impact Factor 8.311

Refereed § Peer-reviewed & Refereed journal

Vol. 12, Issue 11, November 2025

DOI: 10.17148/IARJSET.2025.121127

IV. SUSTAINABLE DEVELOPMENT GOALS

SDG Goals	Goal Description	Justification
SDG 1- No Poverty	End poverty in all its forms everywhere.	The paper focuses on creating economic viability and the economic well-being of rural communities. Innovations like AI-driven direct-to-consumer platforms are shown to increase farmer profits by 10% and provide profitable options for a living.
SDG 2: Zero hunger	End hunger, achieve food security and improved nutrition, and promote sustainable agriculture.	The project supports sustainable agriculture and health-oriented food production. Innovations in AI and IoT help improve crop yield enhance food quality and provide nutrition food by avoiding pesticides.
SDG 3 – Good Health and Well-being	Ensure healthy lives and promote well-being for all at all ages.	Organic farming aims for human welfare by providing nutrition food that is free from pesticides and fertilizers. This contributes to healthier lifestyles by reducing diseases caused by chemical inputs.
SDG 6 – Clean Water and Sanitation	Ensure availability and sustainable management of water and sanitation for all.	Organic farming prevents water contamination by avoiding the runoff of chemical fertilizers and pesticides. Furthermore, the paper highlights innovations like hydroponics and aeroponics that reduce water consumption by up to 95%-99%.
SDG 9: Industry, Innovation and Infrastructure	Build resilient infrastructure, promote inclusive and sustainable industrialization, and foster innovation.	The entire survey is focused on emerging innovations and technological advances. It reviews computational technologies such as Artificial Intelligence, IoT, data mining, and soilless farming as key to revolutionizing agriculture.
SDG 11: Sustainable Cities and Communities.	Make cities and human settlements inclusive, safe, resilient, and sustainable.	The paper reviews waste recycling and innovations like indoor urban organic farming and soilless methods (hydroponics, aeroponics), which enable sustainable, local food production directly within cities.

REFERENCES

- [1]. Dr. Sinciya P.O, Sreyas George, Kota Dinesh, Jeffin Abraham Jacob and Shoby Abraham ,"OrgoFarm:-Harnessing Artificial Intelligence and Machine Learning to Revolutionize Organic Farming and Direct-to-Consumer Marketing", 5th International Conference on Expert Clouds and Applications (ICOECA),2025.
- [2]. Lim Sanny, Pantri Heriyati, Chairani Putri Pratiwi, Diana Lo, Glory Aguzman and Sekar Wulan Prasetyaningtyas, "A Soft System Approach for Smart Agriculture: The use of Digital Marketing in Organic Farm Business", International Conference on ICT for Smart Society (ICISS),2024.
- [3]. Krisana Yodnil, Pischanunt Sonthitham and Arkira Sonthitham, "Internet of Things Technology for Salad Organics Vegetable Smart Farming System with Promoting to Healthy Food Career Entrepreneurs", International Conference on Power, Energy and Innovations (ICPEI), Nakhon Ratchasima (Korat), THAILAND, October 16-18, 2024.
- [4]. Fatima A.S Binofai, Maha O.A Mohamad and Mustapha D. Ibrahim, "SWOT-4Ps analysis of UAE Organic food market", Advances in Science and Engineering Technology International Conferences (ASET),2022.
- [5]. Murali E, Vignesh R, Deepa D, Priyanka N, Hemalatha S and Rajashree S, "A Survey on Organic Agro Data Towards Agriculture Using Data Mining", Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC),2022.
- [6]. N. Thilagavathi ,Dr. T. Amudha and N Sivakumar ," COMPUTATIONAL PERSPECTIVE ON ORGANIC FARMING",IEEE International Conference on Technological Innovation in ICT for Agriculture and Rural Development (TIAR),2017.

IARJSET

ISSN (O) 2393-8021, ISSN (P) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology Impact Factor 8.311 Reer-reviewed & Refereed journal Vol. 12, Issue 11, November 2025

DOI: 10.17148/IARJSET.2025.121127

- [7]. Mahesh PJ, Minhas Naheem, Razak Mubafar, Shyba S and Sunitha Beevi, "New Aspect for Organic Farming Practices: Controlled Crop Nutrition and Soilless Agriculture" IEEE Global Humanitarian Technology Conference, 2016.
- [8]. S.Selvi , R.Karthikeyan and U.Vanitha, "Organic Farming: Technology for EnvironmentFriendly Agriculture", IEEE International Conference On Advances In Engineering, Science And Management (ICAESM -2012), March 30-31, 2012.