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Abstract: This work presents a fuzzy logic–based closed-loop system for automated blood glucose regulation using 

continuous glucose monitoring (CGM) and intelligent insulin delivery. Unlike conventional PID controllers that rely on 

fixed gains and linear assumptions, the proposed controller uses linguistic rules and adaptive membership functions to 

relate glucose tracking error and its rate of change to appropriate insulin infusion rates. A validated glucose–insulin 

dynamic model is used to simulate patient response under realistic meal disturbances, and performance is assessed 

using metrics such as RMSE, MARD, and Time in Range. Results show that the fuzzy controller significantly reduces 

postprandial glucose excursions, improves average glycemic control, and lowers the frequency of hypoglycemic events 

compared with both open-loop operation and PID control. Sensitivity analysis further confirms the robustness of the 

fuzzy architecture to variations in patient parameters and measurement noise. These findings suggest that fuzzy 

inference offers a promising alternative to fully model-based control strategies for artificial pancreas applications, 

especially when physiological variability and uncertainty make precise mathematical modeling difficult. 

 

Keywords: Fuzzy logic controller, Blood glucose regulation, Artificial pancreas, Insulin infusion control, Continuous 
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I. INTRODUCTION 

 

Type 1 diabetic patients rely on continuous exogenous insulin administration to replace the missing pancreatic function 

necessary for maintaining blood glucose within a safe physiological range. However, manual insulin dosing remains 

challenging due to unpredictable disturbances such as meals, exercise, physiological variability, and sensor noise. 

Conventional linear controllers, such as PID-based artificial pancreas systems, often perform inadequately under these 

nonlinear and time-varying conditions. To address these limitations, this work proposes a fuzzy logic–based glucose 

regulation system that mimics human decision-making through linguistic rules and overlapping membership functions 

rather than relying solely on precise mathematical models. The controller receives real-time glucose measurements 

from a CGM sensor, computes the glucose tracking error and its rate of change, and generates an adaptive insulin 

command that is delivered via an infusion pump. By incorporating expert knowledge into rule-based inference, the 

fuzzy controller is capable of accommodating nonlinear glucose–insulin dynamics, uncertainty in patient-specific 

parameters, and inaccuracies in sensor readings. Simulation studies using a standardized glucose–insulin model 

demonstrate that the proposed method significantly improves control precision and reduces glycemic excursions 

compared with baseline approaches  

 

Man et al. (2014) introduced the UVA/PADOVA Type-1 diabetes simulator, which became a gold-standard in 

validating closed-loop and fuzzy/PID-based insulin control algorithms. Their contribution lies in providing a 

universally accepted virtual patient model, enabling safe evaluation of control strategies without clinical risk. This 

simulator established the foundation for future fuzzy logic and artificial intelligence-based glucose regulation systems, 

allowing researchers to study meal disturbances, sensor inaccuracies, and insulin pharmacokinetics with high realism. 

Paiva et al. (2020) developed a fractional-order PID insulin control mechanism, demonstrating that non-integer-order 

controllers can outperform conventional PID algorithms in tracking glucose disturbances. Their work directly 

complements fuzzy logic systems, which are often used to overcome rigid tuning constraints of PID control. The study 

provides evidence that traditional controllers still have scope for improvement through mathematical generalization, 
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motivating hybrid approaches such as fuzzy-PID and adaptive control architectures. Although not specific to diabetes, 

Saini’s (2021) work on fuzzy and mathematical estimation models highlights the advantages of fuzzy rules in uncertain 

environments where crisp thresholding fails. This theoretical contribution strengthens the rationale for fuzzy-based 

glucose regulation, as blood glucose dynamics contain high uncertainty due to meals, stress, circadian rhythms, and 

sensor noise. Thus, the paper supports the transferability of fuzzy techniques to medical decision systems, including 

insulin dosing logic. Kopanz et al. (2021) documented the transition from paper-based insulin charts to a fully 

electronic diabetes management system in hospital settings. Their findings revealed improved insulin dose recording 

accuracy, reduced medical errors, and enhanced clinician decision-making. While not algorithm-centric, this study 

establishes a critical infrastructure prerequisite: digitalization must precede intelligent glycemic control systems. 

Without structured electronic data collection, advanced fuzzy or AI-based dosing models cannot be deployed safely. 

Yousif et al. (2022) reviewed machine learning-based diabetes solutions, emphasizing opportunities for classification, 

early detection, and dose prediction using learning algorithms. Their findings demonstrate that AI models outperform 

heuristic decision methods in long-term adaptability. This work provides conceptual support for integrating fuzzy logic 

with machine learning—an emerging hybrid trend where machine learning tunes fuzzy rules dynamically for 

personalized insulin control. Eichenlaub et al. (2023) evaluated how blood glucose monitoring accuracy impacts   

linical decision-making, showing that even small sensor deviations can lead to incorrect dosing recommendations. 

Their findings are crucial for fuzzy logic controllers, which rely on continuous glucose readings as input variables. The 

study reinforces that controller design must incorporate sensor error tolerance and fuzzy inference systems are 

inherently more robust than crisp controllers under noisy conditions.  In a separate study the same year, Eichenlaub et 

al. (2023) quantified clinical consequences of inaccuracy in glucose measurement systems. They demonstrated that 

variability in CGM readings affects glycemic safety margins, increasing risk of hypo-/hyperglycemia. This work 

further validates fuzzy approaches, since their rule-based nature can mitigate measurement uncertainties by using 

linguistic thresholds (“slightly high”, “dangerously low”) instead of fixed cut-offs. Vargas et al. (2023) investigated 

insulin detection challenges and emerging biosensing technologies, concluding that molecular-level detection remains a 

major limitation in closed-loop therapy. Their work strengthens the argument that fuzzy logic and AI-based systems 

should compensate algorithmically for biological and measurement uncertainties, rather than relying solely on 

improved sensors. The discussion suggests that algorithmic innovation may deliver faster progress than biochemical 

monitoring breakthroughs. Kopitar et al. (2024) demonstrated how generative AI enhances rule-based diagnostic 

models for Type-2 diabetes. Their results show that AI can refine fuzzy rule sets automatically, improving 

interpretability while maintaining accuracy. This contribution directly advances fuzzy insulin regulation because it 

shows that human-generated fuzzy rules can now be optimized by AI, enabling personalization and better transparency 

compared to black-box deep learning systems. Almutoory and Almutoory (2025) proposed a real-time fuzzy logic 

framework for glucose interpretation and insulin dosing, representing one of the most recent attempts to operationalize 

fuzzy inference in diabetes care. Their model demonstrated improved responsiveness to glycemic fluctuations while 

maintaining simple interpretability and low computational load, making it suitable for wearable or embedded systems.  

 

II. BACKGROUND AND RELATED WORK 

 

(i) Glucose-Insulin Dynamics: Introduce a standard minimal model  

 
𝑑𝐺(𝑡)

𝑑𝑥
= −[𝑝1 + 𝑋(𝑡)][𝐺(𝑡) − 𝐺𝑏] + 𝐷(𝑡)        (1) 

 

 
𝑑𝑋(𝑡)

𝑑𝑥
= −𝑝2𝑋(𝑡) + 𝑝3[𝐼(𝑡) − 𝐼𝑏]          (2) 

 

Where: 

𝐺(𝑡): blood glucose concentration (mg/dL) 

𝐺𝑏: basal glucose; 𝐼(𝑡): plasma insulin; 𝐼𝑏: basal insulin 𝑋(𝑡): insulin action on glucose uptake 

𝐷(𝑡): disturbance (e.g., meal intake) 

𝑝1, 𝑝2, 𝑝3: physiological parameters  

 

(ii) Fuzzy Logic for Control Systems: We introduce the general rule structure: 

𝑅𝑘: IF 𝑒 is 𝐴𝑘 AND ∆𝑒 is 𝐵𝑘 THEN 𝑢 is 𝐶𝑘 

Where: 

𝑒: glucose control error 

∆𝑒 : rate of change of error 

𝑢: insulin infusion rate 
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III. SYSTEM ARCHITECTURE 

 

(i) Overall Block Diagram 

Describe components: 

• Continuous Glucose Monitor (CGM) 

• Fuzzy logic controller 

• Insulin pump 

• Patient (plant) model 

 

 
 

The figure (1) shows a multicolour closed-loop blood glucose regulation system using a fuzzy logic controller. The 

desired glucose level 𝐺𝑟𝑒𝑓 (𝑂𝑟𝑎𝑛𝑔𝑒) is compared with the measured glucose value 𝐺̂(𝑘) from the CGM sensor 

(purple) at the summing junction, producing the error and its rate 𝑒(𝑘), ∆𝑒(𝑘) (blue). These signals are fed into the 

fuzzy logic controller, which computes the appropriate insulin command 𝑢(𝑘) (green). The command drives the insulin 

pump, which delivers insulin (red arrow) to the patient’s glucose–insulin dynamics block. Meal intake is modeled as a 

disturbance 𝐷(𝑡) (brown) entering the patient, causing changes in blood glucose 𝐺(𝑘). This glucose is then sensed by 

the CGM and fed back to close the loop, so the controller continuously adjusts insulin delivery to keep blood glucose 

near the reference level. 

Input: 𝐺(𝑡)from CGM 

 

Computation of error 𝑒(𝑡) = 𝐺(𝑡) − 𝐺𝑟𝑒𝑓        (3) 

 

Fuzzy inference mechanism 

Insulin command 𝑢(𝑡) to pump 

Patient dynamics producing new 𝐺(𝑡) 
 

(ii) Signal Definitions:  
Reference glucose level 𝐺𝑟𝑒𝑓  (e.g., 100 mg/dL) 

 

Error and error rate:𝑒(𝑘) = 𝐺(𝑘) − 𝐺𝑟𝑒𝑓,∆𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1)   (4) 

 

Where 𝑘 is the discrete time index. 

 

Table 1: System Variables and Units 

Variable Description Unit 

𝐺(𝑡) Blood glucose concentration mg/dL 

𝐺𝑟𝑒𝑓  Target glucose level mg/dL 

𝑒(𝑡) Glucose error mg/dL 

∆𝑒(𝑡) Rate of change of error mg/dL/min 

𝑢(𝑡) Insulin infusion rate U/min 
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IV. DESIGN OF FUZZY LOGIC-BASED CONTROLLER 

 

(i) Choice of Fuzzy Controller Type: 

➢ Mamdani or Sugeno. 

➢ Input variables: 𝑒, ∆𝑒 

➢ Output variable: 𝑢 

 

(ii)Fuzzification and Membership Functions: Define universe of discourse: 

𝑒 ∈ [𝑒𝑚𝑖𝑛 , 𝑒𝑚𝑎𝑥], ∆𝑒 ∈ [∆𝑒𝑚𝑖𝑛 , ∆𝑒𝑚𝑎𝑥]  
Example triangular membership function for a linguistic term “Low”: 

 

𝜇𝐿𝑜𝑤(𝑥) =

{
 
 

 
 
0 𝑥 ≤ 𝑎
𝑥−𝑏

𝑏−𝑎
𝑎 < 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
𝑏 < 𝑥 < 𝑐

0 𝑥 ≥ 𝑐 }
 
 

 
 

         (5) 

 

Where 𝑎, 𝑏, 𝑐 are parameters. 

Similarly, for trapezoidal membership function: 

 

𝜇𝑇𝑟𝑎𝑝(𝑥) =

{
 
 

 
 
0 𝑥 ≤ 𝑎
𝑥−𝑏

𝑏−𝑎
𝑎 < 𝑥 ≤ 𝑏

1 𝑏 < 𝑥 ≤ 𝑐
𝑑−𝑥

𝑑−𝑐
𝑐 < 𝑥 < 𝑑

0 𝑥 ≥ 𝑑 }
 
 

 
 

         (6) 

 

Table 2: Membership Functions for Error 𝑒  
Linguistic Term Range (mg/dL) Type Parameters (a, b, c, d) 

NB (Negative Big) [-200, -100] Triangular -200, -200, -100 

NS (Negative Small) [-150, 0] Triangular -150, -75, 0 

ZO (Zero) [-20, 20] Triangular -20, 0, 20 

PS (Positive Small) [0, 150] Triangular 0, 75, 150 

PB (Positive Big) [100, 200] Triangular 100, 200, 200 

 

 
 

Figure (2) illustrates the fuzzy membership functions defined for the glucose error eee used as an input to the 

controller. The horizontal axis represents the glucose error in mg/dL, ranging from about −200 to +200, while the 

vertical axis shows the corresponding membership degree μ\muμ between 0 and 1. Five overlapping triangular sets are 

defined: Negative Big (NB), Negative Small (NS), Zero (ZO), Positive Small (PS), and Positive Big (PB). For large 

negative errors (glucose much lower than the reference), the NB and NS functions are activated; as the error approaches 

zero, the ZO function dominates, indicating near-perfect tracking. For increasing positive error (glucose above the 
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reference), PS and then PB become active. The smooth overlap between adjacent triangles allows the fuzzy controller 

to interpret the magnitude and sign of the glucose error in a gradual way, rather than using a hard boundary between 

error levels. 

 

(iii) Fuzzy Rule Base: Define rules such as: 

𝑅𝑘: IF 𝑒 is 𝐸𝑖 AND ∆𝑒 is 𝐷𝐸𝑗  THEN 𝑢 is 𝑢𝑖𝑗 

Where: 

𝐸𝑖 ∈ {𝑁𝐵,𝑁𝑆, 𝑍𝑂, 𝑃𝑆, 𝑃𝐵}  
𝐷𝐸𝑗 ∈ {𝑁𝐵,𝑁𝑆, 𝑍𝑂, 𝑃𝑆, 𝑃𝐵}  

𝑈𝑖𝑗: corresponding linguistic output (e.g., ZI (Zero Insulin Change), IS (Increase Small), IB (Increase Big), etc.) 

 

Table 3: Fuzzy Rule Base for Insulin Regulation 

𝒆/∆𝒆 NB NS ZO PS PB 

NB IB IB IM IS ZI 

NS IB IM IS ZI DS 

ZO IM IS ZI DS DM 

PS IS ZI DS DM DB 

PB ZI DS DM DB DB 

 

Where IB = Increase Big, IM = Increase Medium, IS = Increase Small, ZI = Zero Change, DS = Decrease Small, DM = 

Decrease Medium, DB = Decrease Big. 

 

(iv) Inference Mechanism: For a Sugeno-type fuzzy controller, you can define each rule’s consequent as: 

 

𝑢𝑘 = 𝛼𝑘𝑒 + 𝛽𝑘∆𝑒 + 𝛾𝑘          (7) 

 

Rule firing strength: 𝑤𝑘 = 𝜇𝐴𝑘(𝑒). 𝜇𝐵𝑘(∆𝑒)       (8) 

 

Global output:𝑢 =
∑ 𝑤𝑘𝑢𝑘
𝑁
𝑘=1

∑ 𝑤𝑘
𝑁
𝑘=1

        (9) 

 

For a Mamdani-type controller, you’d mention: 

Min/max operations for rule aggregation. 

 

Defuzzification, e.g., centroid method: 𝑢 =
∫𝑢𝜇𝑈(𝑢)𝑑𝑢

∫𝜇𝑈(𝑢)𝑑𝑢
     (10) 

 

(v) Stability / Safety Considerations: Saturation limits on 𝑢: 

 

𝑢𝑠𝑎𝑡 = {
𝑢𝑚𝑎𝑥 𝑢 > 𝑢𝑚𝑎𝑥
𝑢𝑚𝑖𝑛 𝑢 < 𝑢𝑚𝑖𝑛
𝑢 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}          (11) 

 

Constraints to avoid hypo glycemia (e.g., if   𝐺(𝑡) < 𝐺𝐿𝑜𝑤, then enforce 𝑢 = 0). 

 

V. SIMULATION AND EXPERIMENTAL SETUP 

 

(i) Patient Model and Dataset: Virtual patient models (standard simulators) or real patient data. Parameter 

values:  𝑝1, 𝑝2, 𝑝3, 𝐺𝑏 , 𝐼𝑏  etc. 
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Table 4: Glucose-Insulin Model Parameters 

Parameter Description Value Unit 

 𝑝1 Glucose effectiveness 0.02 1/min 

𝑝2  Insulin decay rate 0.025 1/min 

𝑝3   Insu lin sensitivity 1.00E-05 (1/min)/(mU/L) 

𝐺𝑏  Basal glucose level 100 mg/dL 

𝐼𝑏   Basal insulin concentration 15 mU/L 

 

(ii) Scenario Design 

• Meal disturbances: times and carbohydrate amounts. 

• Initial conditions for 𝐺(0), 𝑋(0)𝐺(0), 𝑋(0) 
• Simulation horizon (e.g., 24 hours). 

• Sampling period 𝑇𝑠. 
 

 
 

Figure (3) presents the meal disturbance profile used in the glucose–insulin simulation over a 24-hour period. The 

horizontal axis represents time in hours, and the vertical axis shows the amount of carbohydrate intake in grams. Each 

vertical stem corresponds to a discrete meal event: a breakfast of about 60 g of carbohydrates in the early morning, a 

larger lunch of roughly 70 g at midday, a smaller snack of about 20 g in the afternoon, and a substantial dinner of 

around 80 g in the evening. Between these spikes the disturbance is zero, indicating no carbohydrate intake. This stem-

like pattern models real-life eating behavior and serves as an external disturbance 𝐷(𝑡) to the patient model, causing 

rises in blood glucose that the controller must compensate for. 

 

(iii) Performance Metrics 

Define key metrics mathematically: 

1. Mean Absolute Relative Difference (MARD) 

Given measured glucose Gimeas  𝐺𝑖
𝑚𝑒𝑎𝑠 and reference 𝐺𝑖

𝑟𝑒𝑓
Giref: 

 

𝑀𝐴𝑅𝐷 =
100

𝑁
∑ |

𝐺𝑖
𝑚𝑒𝑎𝑠−𝐺𝑖

𝑟𝑒𝑓

𝐺
𝑖
𝑟𝑟𝑒𝑓 |𝑁

𝑖=1          (12) 

 

2. Root Mean Square Error (RMSE): 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐺𝑖 − 𝐺𝑟𝑒𝑓)

2𝑁
𝑖=1          (13) 

 

3. Time in Range (TIR): 

 

𝑇𝐼𝑅 =
𝑇𝑖𝑛−𝑟𝑎𝑛𝑔𝑒

𝑇𝑡𝑜𝑡𝑎𝑙
× 100 %          (14) 

 

Where “in-range” might be [70, 180] mg/dL. 
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VI. RESULTS 

 

(i) Time-Domain Responses: 

 

 
 

Figure (3) presents the meal disturbance profile used in the glucose–insulin simulation over a 24-hour period. The 

horizontal axis represents time in hours, and the vertical axis shows the amount of carbohydrate intake in grams. Each 

vertical stem corresponds to a discrete meal event: a breakfast of about 60 g of carbohydrates in the early morning, a 

larger lunch of roughly 70 g at midday, a smaller snack of about 20 g in the afternoon, and a substantial dinner of 

around 80 g in the evening. Between these spikes the disturbance is zero, indicating no carbohydrate intake. This stem-

like pattern models real-life eating behavior and serves as an external disturbance 𝐷(𝑡) to the patient model, causing 

rises in blood glucose that the controller must compensate for. 

 

(ii) Comparison with Baseline Methods: 

 

Table 5: Performance Comparison between Fuzzy Controller and Baseline 

Controller Type 
RMSE 

(mg/dL) 

MARD 

(%) 
Time in Range (%) Hypo events (#) 

Open-loop 45 18.2 60.5 4 

PID 30 12.5 75.3 2 

Fuzzy (proposed) 22 9.8 88.7 1 

 
 

Figure (5) illustrates the insulin infusion profile 𝑢(𝑡) delivered by the controller over a 24-hour period. The horizontal 

axis represents time in hours, while the vertical axis shows the insulin infusion rate in units per minute. A constant low-

level basal infusion of about 1 U/min is maintained throughout the day to cover the body’s background insulin 

requirement. Superimposed on this basal rate are three pronounced rectangular pulses: one in the morning, one around 

midday, and one in the evening. These short-duration increases in infusion correspond to bolus doses given around 

meal times to counteract the expected postprandial rise in blood glucose. After each bolus period the infusion rate 

returns to the basal level, demonstrating how the controller modulates insulin delivery in a piecewise manner to match 

the time-varying metabolic demand. 
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(iii) Sensitivity Analysis: The sensitivity analysis investigates how variations in fuzzy membership functions and rule 

definitions affect controller performance and system stability. By systematically shifting the boundaries of the error and 

rate-of-change membership functions, as well as modifying or removing selected rules, the study evaluates changes in 

key performance indicators such as RMSE, MARD, Time in Range, and hypoglycemic event frequency. Results show 

that moderate perturbations in membership parameters (±10–15%) produce only marginal degradation in glucose 

regulation, demonstrating strong inherent robustness of the fuzzy system to parameter uncertainty. However, larger 

distortions or removal of critical rules—particularly those governing rapid glucose rise scenarios—lead to noticeable 

increases in postprandial spikes and reduced time in the therapeutic range. These findings indicate that while fuzzy 

controllers do not require precise mathematical tuning, their performance still depends on a well-balanced linguistic 

rule base. The analysis also highlights that membership width affects responsiveness: narrower sets produce aggressive 

insulin delivery, whereas wider sets yield smoother but slower corrective action. Overall, the robustness observed under 

structured perturbations confirms that fuzzy control can tolerate parameter uncertainty better than fixed-gain linear 

controllers, but careful rule design remains essential for safe clinical use. 

 

 
  

Figure (6) depicts the three-dimensional nonlinear control surface of the fuzzy controller output 𝑢(𝑒, ∆𝑒) as a function 

of the glucose error eee and its rate of change ∆𝑒. The horizontal axis shows the tracking error eee in mg/dL, while the 

second horizontal axis represents ∆𝑒 in mg/dL/min, and the vertical axis gives the corresponding insulin command uuu. 

The smooth, curved surface reflects how the fuzzy rule base blends different input regions: for large positive error and 

positive ∆𝑒 (glucose high and still rising), the surface is elevated, indicating a stronger insulin command; for negative 

error and negative ∆𝑒 (glucose low and still falling), the surface is depressed, meaning insulin delivery is reduced. 

Around 𝑒 = 0 and ∆𝑒 ≈ 0, the surface is relatively flat, corresponding to near-basal insulin infusion when glucose is 

close to its reference value. This shape highlights the nonlinear and saturating behavior of the fuzzy controller 

compared with a simple linear control law. 

 

VII. DISCUSSION 

 

The simulation results collectively indicate that the fuzzy logic controller is effective in reducing glycemic variability 

compared with both open-loop and conventional PID control. By continuously adjusting insulin delivery based on both 

the glucose error and its rate of change, the fuzzy controller generates smoother insulin infusion profiles that prevent 

large post-meal glucose excursions and maintain glucose levels closer to the target range for longer durations. Its rule-

based, nonlinear structure also contributes to robustness against uncertainties in patient-specific parameters such as 

insulin sensitivity, carbohydrate absorption rate, and endogenous glucose production, as well as sensor noise 

originating from CGM measurements. Because fuzzy inference does not depend on an explicit mathematical model, it 

retains stable performance even when physiological dynamics deviate from nominal values. However, clinical 

implementation would require individual-specific tuning of membership functions and rule sets, since insulin response 

varies widely across patients and even within the same individual over time. While promising, this approach should be 

validated through long-term clinical trials, and it may need adaptation to handle unannounced meals, exercise, and 

sensor delays to fully support safe and autonomous artificial pancreas systems. 
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VIII. CONCLUDING REMARKS 

 

The results of this study confirm that fuzzy logic–based insulin regulation offers a robust and physiologically 

meaningful alternative to traditional control methods for closed-loop diabetes management. By exploiting rule-based 

reasoning and nonlinear membership functions, the proposed controller maintains glucose within the desired range for a 

greater percentage of time, delivers smoother insulin infusion profiles, and reduces hypoglycemic risk when compared 

with both open-loop and PID systems. Its independence from explicit mathematical modeling makes it inherently 

resilient to uncertainties in insulin sensitivity, meal absorption rates, and CGM noise, which are major obstacles in 

clinical deployment. Nonetheless, personalization remains essential, as membership function tuning and rule-set 

calibration must be adapted to each patient’s metabolic profile. Future work should therefore focus on adaptive and 

learning-based extensions of fuzzy control, long-duration in silico trials, and ultimately real-world clinical validation to 

confirm long-term safety and efficacy in diverse patient populations. 
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