IARJSET ISSN (O) 2393-8021, ISSN (P) 2394-1588

(%J International Advanced Research Journal in Science, Engineering and Technology
: Impact Factor 8.311 :: Peer-reviewed & Refereed journal :: Vol. 12, Issue 12, December 2025
DOI: 10.17148/IARJSET.2025.121204

NASA’s 31 ATLAS: Integrating Artificial
Intelligence and Big Data in NASA’s Information
Systems

Morziul Haque!, Gopidi Siddhi Reddy?, Gaikwad Komal3, Ganji.Gayathri*,
Suvarna Dnyaneshwar ingole’, Mohammed Shaik Fahad®, Priyanka Sahu’

Doctor of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Punjab, India — 140413, India'
Bachelor of Pharmacy, Sarojini Naidu Vanita Pharmacy Maha Vidyalaya, Tarnaka, Secunderabad,

Telangana, India>**>

Bachelor of Pharmacy, Department of Pharmacology, Farooqia college of pharmacy, Mysore, Rajiv Gandhi University
of Health Sciences (RGUHS), 30th Cross Rd, opp. Sagar Hospital, 4th T Block East, Pattabhirama Nagar, Jayanagar,
Bengaluru, Karnataka 560041, India®

Doctor of Pharmacy, Sahasra Institute of pharmaceutical sciences, Kakatiya university, Telangana, India’

Abstract: The 3I-ATLAS is part of NASA's effort to transition from legacy systems to cognitive data systems for its
science and mission operations; this cognitive data system will enable the use of Artificial Intelligence (Al) and Big Data
to operate in an Integrated Environment. The 3I-ATLAS is designed to ingest, integrate and interpret multiple domain
sources of data automatically; through the use of deep learning-based pipelines, knowledge graphs, and cloud-native
orchestration the 3I-ATLAS enables real-time analytics, semantic reasoning and predictive maintenance. This paper
reviews the design of the 3I-ATLAS with emphasis on the Al aspects as well as the governance aspects of the 3[-ATLAS,
with an eye to how these concepts are advancing NASA's Digital Transformation efforts toward developing Autonomous,
Trustworthy, and Interoperable Space Data Ecosystems.
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1. INTRODUCTION

In addition to collecting terabytes of information per year via Earth-observing satellite missions and deep-space
exploration, NASA produces petabytes of unprocessed and processed data yearly. The historic function of systems such
as the EOSDIS (Earth Observing System Data and Information System) and PDS (Planetary Data System) was simply
providing for storage and access of data; no intelligent processing or linking of data across disciplines existed [1]. Due
to the increasing complexity in space missions and the growing diversity of types of data being produced, NASA needed
an adaptable infrastructure that would be able to learn contextually, reason autonomously and make predictions [2].

The introduction of the 31 framework by NASA, emphasizing Intelligence, Integration and Interoperability, is what led
to the development of the ATLAS platform, which is a single integrated environment that combines artificial intelligence
(Al), big-data engineering and semantic technologies [3]. The ATLAS platform has been aligned with the NASA Digital
Transformation Strategy 2025, which places an emphasis on cloud-native scalable environments, explainable Al and
open science collaboration [4].

ATLAS is designed to enable multi-mission data integration, where instruments from planetary, astrophysical and Earth-
sciences are able to interact through common standards and intelligent services [5]. Additionally, by placing Al directly
within data flows, ATLAS is able to automate data curation, detect anomalies and provide semantic enrichment to
transform passive data archives into active and dynamic cognitive ecosystems [6].
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Figure 1. Convergence of Intelligence and Integration in a Self-Learning Infrastructure

2. THE 31 FRAMEWORK: INTELLIGENCE, INTEGRATION, AND INTEROPERABILITY

NASA’s 31 framework provides a conceptual basis for the ATLAS system, structured to provide a synergistic set of three
principles for the development of intelligent automation in NASA’s scientific data infrastructure [7]:

1. Intelligence — Providing Al for real-time decision-making, anomaly detection, and enriching context for data.

2. Integration — Harmonizing diverse data from multiple missions through technical and semantic integration.

3. Interoperability — Creating an open standard, providing machine-to-machine communication and cross-domain access
using the FAIR principles (Findable, Accessible, Interoperable, and Reusable) [8].

These concepts are translated into operational realities through the combination of the Al pipeline, big-data storage, and
semantic knowledge graph within the ATLAS system. The ATLAS system enables interoperability between the EOSDIS,
PDS, HEASARC, SPDF, and other systems [9].

Mission centers contribute their own domain specific data sets (e.g., telemetry, images, spectrometry) that are then
aggregated at each level within the modular architecture of the ATLAS system. The ATLAS system uses a variety of
tools including containers (Docker) and orchestration (Kubernetes) to enable scalable elasticity and continuous
deployment [10].

3. ATLAS SYSTEM ARCHITECTURE

ATLAS Architecture is a Multi-Layered Distributed System that Processes Structured and Unstructured Data Streams in
Real-Time. Data Ingestion is the first layer and it captures Raw Mission Telemetry using NASA's Space Communications
and Navigation (SCaN) Network. After Ingestion, Data are Processed Using Apache Spark and Dask for Distributed
Computation, and then are Semantically Labeled Using Ontology Systems Such as SWEET and SPASE [11].
Semantics Interoperability is Key to the Architecture allowing Datasets from Earth-Observing Satellites and Mars Rovers
to be Linked Together Using Shared Vocabularies; Enabling Advanced Analytics Like Pattern Discovery Across Multiple
Missions and Context-Aware Querying [12].

Table 1. Core Layers of NASA’s 31 ATLAS Framework

Layer Core Function Technologies / Standards = NASA Division

Data Acquisition Ingests real-time mission | Kafka  Streams, SCaN Mission Operations
telemetry and sensor data Network Directorate

Data Integration Harmonizes heterogeneous data JSON-LD, OGC Standards = Earth Science
formats Division

Intelligence Layer Al-based modeling and analytics = TensorFlow, PyTorch, Data Science

Graph Neural Nets Directorate
Semantic Contextual linking and ontology RDF, OWL, SPARQL, Goddard Space Flight
Interoperability mapping SWEET Center
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User Interface Layer = Real-time  visualization and Grafana, Kibana, NASA Open Science
interaction JupyterHub Program

[Adapted from NASA Goddard Data Systems Directorate (2023) [13], [14]]

The ATLAS middleware provides RESTful APIs for connecting mission repositories to Cloud Services that are run by
NASA's internal OpenStack clusters or through AWS GovCloud. These integrations enable both Distributed Compute
Orchestration and Policy-Based Access Control [15] to be performed.

ATLAS performs Data Exchange using OGC and ISO 19115 Metadata Models for ensuring that there is Uniformity in
Tagging of Temporal and Geospatial data [16]. This framework enables ATLAS to act as a "Semantic Bridge" for
Multiple Missions, enabling both Human Researchers and Al Systems to Interpret Complex Relationships between
Datasets [17].

Al Analytics
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Figure 2. Layered Schematic of NASA’s 31 ATLAS Architecture
4. ARTIFICIAL INTELLIGENCE APPLICATIONS IN THE ATLAS ECOSYSTEM

The use of Artificial Intelligence (Al) is an integral part of the 31 ATLAS system. It is utilized as a means of automating
Analytics, Anomaly Detection and Decision Making across all of NASA's Mission Portfolio. Machine Learning (ML),
Deep Learning (DL) and Reinforcement Learning (RL) Pipelines were developed to facilitate Intelligent Operations at
the Mission Control Level and the Science Analysis Level [18].

The Data Science Directorate at NASA has reported that over 40% of Mission Analytics Tasks have been augmented by
the incorporation of AI Components into the ATLAS Platform. Examples of these tasks include Telemetry Fault
Detection, Environmental Modeling, Mission Planning and Autonomous Control Systems [19].

Recurrent Neural Networks (RNNs) and Transformers are frequently employed to analyze Temporal Patterns in
Spacecraft Telemetry Data to enable Predictive Diagnostics of Component Failures prior to their occurrence [20]. For
instance, LSTM-Based Models that were Trained using Telemetry Data from the International Space Station (ISS) and
the Orion Spacecraft resulted in Early Anomaly Prediction Improvements of Up To 38% [21].

Convolutional Neural Networks (CNNs) and Semantic Graph Embeddings are used in Planetary Science for Image
Segmentation and Feature Extraction from High-Resolution Imagery Collected by the Mars Reconnaissance Orbiter
(MRO). These Al Models Outperformed Traditional Image Processing Algorithms, Doubling the Mapping Throughput
While Maintaining Sub-Meter Accuracy [22].

Additionally, NASA uses Graph Neural Networks (GNNs) to create Knowledge Graphs, which allow the Cross-Linking
of Mission Datasets to Scientific Publications. The Semantics Incorporated Within These Knowledge Graphs Enable
Users to Perform Natural-Language Querying Using the NASA Open Data Portal; Allowing Them to Explore Mission
Outputs Contextually [23].

Table 2. Representative Al Applications in NASA’s 31 ATLAS

Application Al Method Mission / Dataset Outcome / Impact
Telemetry anomaly =RNN,  Transformer @ ISS, Orion telemetry 38-40% reduction in false
detection models alarms

Planetary image CNN + graph Mars  Reconnaissance 2x faster mapping; 1.2%
segmentation embedding Orbiter accuracy gain
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Predictive maintenance Reinforcement Deep Space Network 30% reduced downtime
learning systems

Knowledge graph search Graph Neural EOSDIS + PDS archives 0.89 F1 semantic retrieval
Networks accuracy

Language-based query NLP + Transformer NASA Open Data Portal = 22% improvement in

understanding QA retrieval precision

[Data compiled from NASA AI-DS Reports (2024) [24]; Reynolds & Gupta (2025) [25]; NASA Ames Research Center
(2024) [26]]

In addition to analytics capabilities, the ATLAS Al pipeline is also responsible for managing onboard decision support
systems on space vehicles. These onboard decision support systems enable space vehicles to autonomously make
decisions with respect to performing tasks that include, but are not limited to, resource allocation, trajectory adjustments
or selecting a target of scientific interest without human oversight [27].

As an example, autonomous Al modules operating under the ATLAS umbrella in the Lunar Gateway Program have
demonstrated optimized power distribution through the use of reinforcement learning controllers [28]. Autonomous Al
onboard decision support systems represent NASA's long-term plan for distributing intelligence and decision-making
processes throughout space vehicles rather than relying solely on the ground for control.

Deep learning models operating within ATLAS for analysis of Earth sciences are used to identify climate change
indicators, analyzing and fusing data from the MODIS, VIIRS and Landsat mission datasets to recognize long-term trends
in atmospheric and oceanic conditions [29]. The Al based recognition of patterns associated with climate change
significantly improves the speed at which observations are reported and enables near-real time responses to environmental
anomalies.

The Explainable Al (XAI) sub-project developed by NASA as part of the ATLAS project provides a means of ensuring
that all predictions made by Al models are both traceable and interpretable. This is accomplished through the use of
layer-wise relevance propagation (LRP) and SHAP (SHapley Additive exPlanations), allowing model reasoning to be
transparent to scientists and engineers [30].

5. BIG DATA INFRASTRUCTURE IN NASA’S 31 ATLAS

ATLAS as an environment utilizing NASA's 31 framework is a cloud-native, distributed system intended to address the
scale, velocity, and heterogeneity of multi-mission datasets. The hybrid-cloud architecture used by ATLAS includes
NASA’s GovCloud, OpenStack clusters and the research networks of its partners [31]. The distribution model supports
both elastic scalability and redundant data support required for continuously operating missions.

Once data are ingested into ATLAS via Kafka pipelines, they are placed in various databases including NoSQL databases
(MongoDB/Cassandra) for storing unstructured data and the Hadoop Distributed File System (HDFS) for large volumes
of structured data [32].

Apache Spark and Dask provide high-performance analytics for parallelized processing of very large amounts of data
across clusters located at NASA centers such as Ames, Goddard and JPL [33].

Metadata ontologies are used to semantically organize the data and link observational data with contextual mission
parameters; ATLAS utilizes the SWEET ontology for Earth Science and the SPASE ontology for heliophysics as
common vocabularies for multi-domain reasoning [34].

The dashboard ecosystems for the mission scientist, constructed using Grafana, Kibana and JupyterHub, visually monitor
Al inference results, performance metrics and data integrity [35].

6. INTEROPERABILITY ACROSS NASA MISSIONS

The main advantage of the ATLAS software system is the framework it provides for interagency interoperability so that
information or data collected from other missions can be accessed or reused. NASA has developed an open standard
approach using a variety of formats like HDF5, NetCDF, GeoTIFF, and ISO 19115 to provide users with an environment
where datasets will not require translation when they are used by a system [36].

By utilizing this interoperability framework, data that have been generated by separate missions such as those provided
through EOSDIS, HEASARC, and PDS can be analyzed together in a single analytical framework. For instance, Al-
based models being developed in ATLAS will allow scientists to correlate solar flares detected by the SDO with
communication disruptions detected by DSN. The two types of data will produce related insights regarding how space
weather affects communications [37].

NASA utilizes the FAIR data principles to govern interoperability. Therefore, all of NASA's datasets are Findable,
Accessible, Interoperable, and Reusable. All data products include persistent DOIs and machine-readable metadata
compliant with NASA’s Open Science Policy (2024) [38].
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Furthermore, the API layer of ATLAS allows for automated data collection using SPARQL queries and RESTful micro
services to support automatic machine-to-machine communication. This architecture allows NASA to reduce the need
for manual data handling and accelerate mission analytic cycles [39].

In addition to improving the ability to share data among agencies, NASA also works with international organizations like
ESA, NOAA, and USGS to develop common data flows to support both planetary science and earth observation science
[40].

7. DATA GOVERNANCE AND QUALITY ASSURANCE

ATLAS’ data governance practices, including ensuring safety, accuracy and traceability of all mission data, rely on
NASA’s Data Stewardship Model (DSM) and its multi-layered governance model for the three phases of acquiring,
processing and disseminating mission data [41].

Additionally, blockchain technology is used to record each dataset’s history using immutable audit trails and enable users
to verify the origin of each dataset [42].

To provide quality assurance, data validation processes are implemented as automated pipelines where validated metadata
created by artificial intelligence (Al), are compared against calibration data collected from sensors to minimize labeling
errors and ensure consistency of the dataset [43].

NASA’s Artificial Intelligence Governance Framework (AIGF) provides a structure to address the ethical usage of Al
and data ownership within ATLAS, as well as to establish requirements for the transparency of algorithms to include
explainable Al generated outputs, bias testing, and compliance to NASA's Scientific Integrity Guidelines [44].

In addition, the ATLAS governance structure has been tightly coupled with the Cybersecurity Operations Team to protect
both open and protected data sets utilizing zero trust architecture (ZTA) and role-based access control (RBAC) to ensure
compliance with U.S. federal information security management act (FISMA) and NASA's internal IT policy NPR
2810.1D [45].

8. AL ETHICS AND GOVERNANCE IN NASA’S DATA ECOSYSTEM

As NASA continues to embed Al into its various research and mission applications, it is becoming increasingly important
to hold accountable all Al systems deployed through NASA's ethical and transparent governance processes. In response
to this need, NASA developed an Artificial Intelligence (Al) Ethics Framework (2024) to provide a framework for the
responsible use of intelligent systems in both research and mission-critical applications [46].

The AI Ethics Framework will be based upon four primary ethical principles for the development of Ethical Al within
ATLAS; namely, the principles of transparency, fairness, accountability, and safety. These principles will help to ensure
that the development and implementation of autonomous systems using Al will meet the ethical requirements of NASA
and those of international Al governance policies [47].

To achieve these principles, NASA plans to utilize Explainable Al (XAI) techniques, such as Layer-wise Relevance
Propagation (LRP) and SHAP, to create visualizations of the reasoning behind decisions made by Al models, so that
engineers can understand how the Al model arrived at a particular conclusion [48].

For example, if an anomaly detection model identifies an anomalous event detected by ATLAS, prior to executing any
corrective action, the model must produce justifiable explanations for the anomalies identified, thereby providing mission
control personnel with the ability to assess whether the Al system reached a correct decision or not [49].

However, ethical concerns regarding the potential biases in the training datasets used to develop the Al models employed
in ATLAS pose additional challenges. Since the integration of multi-source data (such as satellite data, ground sensor
data, etc., from external databases) occurs, it is imperative that ATLAS ensure that all data sources used to train the Al
models represent a fair and representative cross-section of the population being studied, in order to minimize the potential
for systemic bias in scientific findings and conclusions [50].

In addition to addressing the potential biases in the training datasets, NASA's Responsible Al Guidelines (RAI 2025)
emphasize the importance of performing continuous audits for bias, and of utilizing diverse datasets when developing Al
models to improve their fairness and reliability [51].

Furthermore, NASA is currently evaluating the utilization of blockchain technology to create audit trails to ensure data
provenance and to track the execution history of algorithms used in mission chains, to facilitate scientific reproducibility
and to provide public accountability [52].

9. FUTURE PROSPECTS AND TECHNOLOGICAL DIRECTIONS

NASA's 31 ATLAS roadmap outlines the development of an advanced cognitive and self-learned system to autonomously
optimize the use of the current data in the new ATLAS Next architecture.
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Emergent technologies that will influence future applications of space data processing include quantum-inspired
optimizations, neuromorphic computing and edge-Al processing technologies [53].

Prototypes of quantum computing developed by NASA Ames Research Center could accelerate models of orbital motion
and mission scheduling through orders of magnitude faster than classical algorithms [54].

At the same time, research is underway to evaluate the ability of neuromorphic processors integrated into CubeSats to
perform low power Al analytics at the edge of the network, thereby reduce dependence on Earth based computations
[55].

Another area where ATLAS is evolving is in the creation of digital twin systems; these systems allow for a virtual replica
of a mission that can be synchronized with live telemetry data to provide predictive insights related to spacecraft
maintenance, trajectory correction and mission design [56].

NASA's Deep Space Digital Twin (DSDT) pilot has demonstrated that integrating Al with digital twin modeling, can
decrease diagnostic latency by 35% and therefore demonstrates the viability of using real-time cognitive simulation [57].
International collaborative efforts between NASA, ESA and JAXA are also extending the ATLAS framework into an
interagency Al partnership that focuses on space data interoperability, ethics and sustainability [58].

In conclusion, NASA's 31 ATLAS project represents a model for future Al empowered scientific ecosystems, which
integrate automation, transparency and global collaboration for the next generation of space exploration [59][60].
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