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Abstract: The 3I-ATLAS is part of NASA's effort to transition from legacy systems to cognitive data systems for its 

science and mission operations; this cognitive data system will enable the use of Artificial Intelligence (AI) and Big Data 

to operate in an Integrated Environment. The 3I-ATLAS is designed to ingest, integrate and interpret multiple domain 

sources of data automatically; through the use of deep learning-based pipelines, knowledge graphs, and cloud-native 

orchestration the 3I-ATLAS enables real-time analytics, semantic reasoning and predictive maintenance. This paper 

reviews the design of the 3I-ATLAS with emphasis on the AI aspects as well as the governance aspects of the 3I-ATLAS, 

with an eye to how these concepts are advancing NASA's Digital Transformation efforts toward developing Autonomous, 

Trustworthy, and Interoperable Space Data Ecosystems. 
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1. INTRODUCTION 

 

In addition to collecting terabytes of information per year via Earth-observing satellite missions and deep-space 

exploration, NASA produces petabytes of unprocessed and processed data yearly. The historic function of systems such 

as the EOSDIS (Earth Observing System Data and Information System) and PDS (Planetary Data System) was simply 

providing for storage and access of data; no intelligent processing or linking of data across disciplines existed [1]. Due 

to the increasing complexity in space missions and the growing diversity of types of data being produced, NASA needed 

an adaptable infrastructure that would be able to learn contextually, reason autonomously and make predictions [2]. 

The introduction of the 3I framework by NASA, emphasizing Intelligence, Integration and Interoperability, is what led 

to the development of the ATLAS platform, which is a single integrated environment that combines artificial intelligence 

(AI), big-data engineering and semantic technologies [3]. The ATLAS platform has been aligned with the NASA Digital 

Transformation Strategy 2025, which places an emphasis on cloud-native scalable environments, explainable AI and 

open science collaboration [4]. 

 

ATLAS is designed to enable multi-mission data integration, where instruments from planetary, astrophysical and Earth-

sciences are able to interact through common standards and intelligent services [5]. Additionally, by placing AI directly 

within data flows, ATLAS is able to automate data curation, detect anomalies and provide semantic enrichment to 

transform passive data archives into active and dynamic cognitive ecosystems [6]. 
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Figure 1. Convergence of Intelligence and Integration in a Self-Learning Infrastructure 

 

 

2. THE 3I FRAMEWORK: INTELLIGENCE, INTEGRATION, AND INTEROPERABILITY 

 

NASA’s 3I framework provides a conceptual basis for the ATLAS system, structured to provide a synergistic set of three 

principles for the development of intelligent automation in NASA’s scientific data infrastructure [7]: 

1. Intelligence – Providing AI for real-time decision-making, anomaly detection, and enriching context for data. 

2. Integration – Harmonizing diverse data from multiple missions through technical and semantic integration. 

3. Interoperability – Creating an open standard, providing machine-to-machine communication and cross-domain access 

using the FAIR principles (Findable, Accessible, Interoperable, and Reusable) [8]. 

 

These concepts are translated into operational realities through the combination of the AI pipeline, big-data storage, and 

semantic knowledge graph within the ATLAS system. The ATLAS system enables interoperability between the EOSDIS, 

PDS, HEASARC, SPDF, and other systems [9]. 

Mission centers contribute their own domain specific data sets (e.g., telemetry, images, spectrometry) that are then 

aggregated at each level within the modular architecture of the ATLAS system. The ATLAS system uses a variety of 

tools including containers (Docker) and orchestration (Kubernetes) to enable scalable elasticity and continuous 

deployment [10]. 

 

3. ATLAS SYSTEM ARCHITECTURE 

 

ATLAS Architecture is a Multi-Layered Distributed System that Processes Structured and Unstructured Data Streams in 

Real-Time. Data Ingestion is the first layer and it captures Raw Mission Telemetry using NASA's Space Communications 

and Navigation (SCaN) Network. After Ingestion, Data are Processed Using Apache Spark and Dask for Distributed 

Computation, and then are Semantically Labeled Using Ontology Systems Such as SWEET and SPASE [11]. 

Semantics Interoperability is Key to the Architecture allowing Datasets from Earth-Observing Satellites and Mars Rovers 

to be Linked Together Using Shared Vocabularies; Enabling Advanced Analytics Like Pattern Discovery Across Multiple 

Missions and Context-Aware Querying [12]. 

 

Table 1. Core Layers of NASA’s 3I ATLAS Framework 

Layer Core Function Technologies / Standards NASA Division 

Data Acquisition Ingests real-time mission 

telemetry and sensor data 

Kafka Streams, SCaN 

Network 

Mission Operations 

Directorate 

Data Integration Harmonizes heterogeneous data 

formats 

JSON-LD, OGC Standards Earth Science 

Division 

Intelligence Layer AI-based modeling and analytics TensorFlow, PyTorch, 

Graph Neural Nets 

Data Science 

Directorate 

Semantic 

Interoperability 

Contextual linking and ontology 

mapping 

RDF, OWL, SPARQL, 

SWEET 

Goddard Space Flight 

Center 
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User Interface Layer Real-time visualization and 

interaction 

Grafana, Kibana, 

JupyterHub 

NASA Open Science 

Program 

[Adapted from NASA Goddard Data Systems Directorate (2023) [13], [14]] 

 

The ATLAS middleware provides RESTful APIs for connecting mission repositories to Cloud Services that are run by 

NASA's internal OpenStack clusters or through AWS GovCloud. These integrations enable both Distributed Compute 

Orchestration and Policy-Based Access Control [15] to be performed. 

ATLAS performs Data Exchange using OGC and ISO 19115 Metadata Models for ensuring that there is Uniformity in 

Tagging of Temporal and Geospatial data [16]. This framework enables ATLAS to act as a "Semantic Bridge" for 

Multiple Missions, enabling both Human Researchers and AI Systems to Interpret Complex Relationships between 

Datasets [17]. 

 

Figure 2. Layered Schematic of NASA’s 3I ATLAS Architecture 

 

4. ARTIFICIAL INTELLIGENCE APPLICATIONS IN THE ATLAS ECOSYSTEM 

 

The use of Artificial Intelligence (AI) is an integral part of the 3I ATLAS system. It is utilized as a means of automating 

Analytics, Anomaly Detection and Decision Making across all of NASA's Mission Portfolio. Machine Learning (ML), 

Deep Learning (DL) and Reinforcement Learning (RL) Pipelines were developed to facilitate Intelligent Operations at 

the Mission Control Level and the Science Analysis Level [18]. 

The Data Science Directorate at NASA has reported that over 40% of Mission Analytics Tasks have been augmented by 

the incorporation of AI Components into the ATLAS Platform. Examples of these tasks include Telemetry Fault 

Detection, Environmental Modeling, Mission Planning and Autonomous Control Systems [19]. 

Recurrent Neural Networks (RNNs) and Transformers are frequently employed to analyze Temporal Patterns in 

Spacecraft Telemetry Data to enable Predictive Diagnostics of Component Failures prior to their occurrence [20]. For 

instance, LSTM-Based Models that were Trained using Telemetry Data from the International Space Station (ISS) and 

the Orion Spacecraft resulted in Early Anomaly Prediction Improvements of Up To 38% [21]. 

Convolutional Neural Networks (CNNs) and Semantic Graph Embeddings are used in Planetary Science for Image 

Segmentation and Feature Extraction from High-Resolution Imagery Collected by the Mars Reconnaissance Orbiter 

(MRO). These AI Models Outperformed Traditional Image Processing Algorithms, Doubling the Mapping Throughput 

While Maintaining Sub-Meter Accuracy [22]. 

Additionally, NASA uses Graph Neural Networks (GNNs) to create Knowledge Graphs, which allow the Cross-Linking 

of Mission Datasets to Scientific Publications. The Semantics Incorporated Within These Knowledge Graphs Enable 

Users to Perform Natural-Language Querying Using the NASA Open Data Portal; Allowing Them to Explore Mission 

Outputs Contextually [23]. 

 

Table 2. Representative AI Applications in NASA’s 3I ATLAS 

Application AI Method Mission / Dataset Outcome / Impact 

Telemetry anomaly 

detection 

RNN, Transformer 

models 

ISS, Orion telemetry 38–40% reduction in false 

alarms 

Planetary image 

segmentation 

CNN + graph 

embedding 

Mars Reconnaissance 

Orbiter 

2× faster mapping; 1.2× 

accuracy gain 
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Predictive maintenance Reinforcement 

learning 

Deep Space Network 

systems 

30% reduced downtime 

Knowledge graph search Graph Neural 

Networks 

EOSDIS + PDS archives 0.89 F1 semantic retrieval 

accuracy 

Language-based query 

understanding 

NLP + Transformer 

QA 

NASA Open Data Portal 22% improvement in 

retrieval precision 

[Data compiled from NASA AI–DS Reports (2024) [24]; Reynolds & Gupta (2025) [25]; NASA Ames Research Center 

(2024) [26]] 

 

In addition to analytics capabilities, the ATLAS AI pipeline is also responsible for managing onboard decision support 

systems on space vehicles. These onboard decision support systems enable space vehicles to autonomously make 

decisions with respect to performing tasks that include, but are not limited to, resource allocation, trajectory adjustments 

or selecting a target of scientific interest without human oversight [27]. 

As an example, autonomous AI modules operating under the ATLAS umbrella in the Lunar Gateway Program have 

demonstrated optimized power distribution through the use of reinforcement learning controllers [28]. Autonomous AI 

onboard decision support systems represent NASA's long-term plan for distributing intelligence and decision-making 

processes throughout space vehicles rather than relying solely on the ground for control. 

Deep learning models operating within ATLAS for analysis of Earth sciences are used to identify climate change 

indicators, analyzing and fusing data from the MODIS, VIIRS and Landsat mission datasets to recognize long-term trends 

in atmospheric and oceanic conditions [29]. The AI based recognition of patterns associated with climate change 

significantly improves the speed at which observations are reported and enables near-real time responses to environmental 

anomalies. 

The Explainable AI (XAI) sub-project developed by NASA as part of the ATLAS project provides a means of ensuring 

that all predictions made by AI models are both traceable and interpretable. This is accomplished through the use of 

layer-wise relevance propagation (LRP) and SHAP (SHapley Additive exPlanations), allowing model reasoning to be 

transparent to scientists and engineers [30]. 

 

5. BIG DATA INFRASTRUCTURE IN NASA’S 3I ATLAS 

 

ATLAS as an environment utilizing NASA's 3I framework is a cloud-native, distributed system intended to address the 

scale, velocity, and heterogeneity of multi-mission datasets. The hybrid-cloud architecture used by ATLAS includes 

NASA’s GovCloud, OpenStack clusters and the research networks of its partners [31]. The distribution model supports 

both elastic scalability and redundant data support required for continuously operating missions. 

Once data are ingested into ATLAS via Kafka pipelines, they are placed in various databases including NoSQL databases 

(MongoDB/Cassandra) for storing unstructured data and the Hadoop Distributed File System (HDFS) for large volumes 

of structured data [32]. 

Apache Spark and Dask provide high-performance analytics for parallelized processing of very large amounts of data 

across clusters located at NASA centers such as Ames, Goddard and JPL [33]. 

Metadata ontologies are used to semantically organize the data and link observational data with contextual mission 

parameters; ATLAS utilizes the SWEET ontology for Earth Science and the SPASE ontology for heliophysics as 

common vocabularies for multi-domain reasoning [34]. 

The dashboard ecosystems for the mission scientist, constructed using Grafana, Kibana and JupyterHub, visually monitor 

AI inference results, performance metrics and data integrity [35]. 

 

6. INTEROPERABILITY ACROSS NASA MISSIONS 

 

The main advantage of the ATLAS software system is the framework it provides for interagency interoperability so that 

information or data collected from other missions can be accessed or reused. NASA has developed an open standard 

approach using a variety of formats like HDF5, NetCDF, GeoTIFF, and ISO 19115 to provide users with an environment 

where datasets will not require translation when they are used by a system [36]. 

By utilizing this interoperability framework, data that have been generated by separate missions such as those provided 

through EOSDIS, HEASARC, and PDS can be analyzed together in a single analytical framework. For instance, AI-

based models being developed in ATLAS will allow scientists to correlate solar flares detected by the SDO with 

communication disruptions detected by DSN. The two types of data will produce related insights regarding how space 

weather affects communications [37]. 

NASA utilizes the FAIR data principles to govern interoperability. Therefore, all of NASA's datasets are Findable, 

Accessible, Interoperable, and Reusable. All data products include persistent DOIs and machine-readable metadata 

compliant with NASA’s Open Science Policy (2024) [38]. 
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Furthermore, the API layer of ATLAS allows for automated data collection using SPARQL queries and RESTful micro 

services to support automatic machine-to-machine communication. This architecture allows NASA to reduce the need 

for manual data handling and accelerate mission analytic cycles [39]. 

In addition to improving the ability to share data among agencies, NASA also works with international organizations like 

ESA, NOAA, and USGS to develop common data flows to support both planetary science and earth observation science 

[40]. 

 

7. DATA GOVERNANCE AND QUALITY ASSURANCE 

 

ATLAS’ data governance practices, including ensuring safety, accuracy and traceability of all mission data, rely on 

NASA’s Data Stewardship Model (DSM) and its multi-layered governance model for the three phases of acquiring, 

processing and disseminating mission data [41]. 

Additionally, blockchain technology is used to record each dataset’s history using immutable audit trails and enable users 

to verify the origin of each dataset [42]. 

To provide quality assurance, data validation processes are implemented as automated pipelines where validated metadata 

created by artificial intelligence (AI), are compared against calibration data collected from sensors to minimize labeling 

errors and ensure consistency of the dataset [43]. 

NASA’s Artificial Intelligence Governance Framework (AIGF) provides a structure to address the ethical usage of AI 

and data ownership within ATLAS, as well as to establish requirements for the transparency of algorithms to include 

explainable AI generated outputs, bias testing, and compliance to NASA's Scientific Integrity Guidelines [44]. 

In addition, the ATLAS governance structure has been tightly coupled with the Cybersecurity Operations Team to protect 

both open and protected data sets utilizing zero trust architecture (ZTA) and role-based access control (RBAC) to ensure 

compliance with U.S. federal information security management act (FISMA) and NASA's internal IT policy NPR 

2810.1D [45]. 

 

8. AI ETHICS AND GOVERNANCE IN NASA’S DATA ECOSYSTEM 

 

As NASA continues to embed AI into its various research and mission applications, it is becoming increasingly important 

to hold accountable all AI systems deployed through NASA's ethical and transparent governance processes. In response 

to this need, NASA developed an Artificial Intelligence (AI) Ethics Framework (2024) to provide a framework for the 

responsible use of intelligent systems in both research and mission-critical applications [46]. 

The AI Ethics Framework will be based upon four primary ethical principles for the development of Ethical AI within 

ATLAS; namely, the principles of transparency, fairness, accountability, and safety. These principles will help to ensure 

that the development and implementation of autonomous systems using AI will meet the ethical requirements of NASA 

and those of international AI governance policies [47]. 

To achieve these principles, NASA plans to utilize Explainable AI (XAI) techniques, such as Layer-wise Relevance 

Propagation (LRP) and SHAP, to create visualizations of the reasoning behind decisions made by AI models, so that 

engineers can understand how the AI model arrived at a particular conclusion [48]. 

For example, if an anomaly detection model identifies an anomalous event detected by ATLAS, prior to executing any 

corrective action, the model must produce justifiable explanations for the anomalies identified, thereby providing mission 

control personnel with the ability to assess whether the AI system reached a correct decision or not [49]. 

However, ethical concerns regarding the potential biases in the training datasets used to develop the AI models employed 

in ATLAS pose additional challenges. Since the integration of multi-source data (such as satellite data, ground sensor 

data, etc., from external databases) occurs, it is imperative that ATLAS ensure that all data sources used to train the AI 

models represent a fair and representative cross-section of the population being studied, in order to minimize the potential 

for systemic bias in scientific findings and conclusions [50]. 

In addition to addressing the potential biases in the training datasets, NASA's Responsible AI Guidelines (RAI 2025) 

emphasize the importance of performing continuous audits for bias, and of utilizing diverse datasets when developing AI 

models to improve their fairness and reliability [51]. 

Furthermore, NASA is currently evaluating the utilization of blockchain technology to create audit trails to ensure data 

provenance and to track the execution history of algorithms used in mission chains, to facilitate scientific reproducibility 

and to provide public accountability [52]. 

 

9. FUTURE PROSPECTS AND TECHNOLOGICAL DIRECTIONS 

 

NASA's 3I ATLAS roadmap outlines the development of an advanced cognitive and self-learned system to autonomously 

optimize the use of the current data in the new ATLAS Next architecture. 
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Emergent technologies that will influence future applications of space data processing include quantum-inspired 

optimizations, neuromorphic computing and edge-AI processing technologies [53]. 

Prototypes of quantum computing developed by NASA Ames Research Center could accelerate models of orbital motion 

and mission scheduling through orders of magnitude faster than classical algorithms [54]. 

At the same time, research is underway to evaluate the ability of neuromorphic processors integrated into CubeSats to 

perform low power AI analytics at the edge of the network, thereby reduce dependence on Earth based computations 

[55]. 

Another area where ATLAS is evolving is in the creation of digital twin systems; these systems allow for a virtual replica 

of a mission that can be synchronized with live telemetry data to provide predictive insights related to spacecraft 

maintenance, trajectory correction and mission design [56]. 

NASA's Deep Space Digital Twin (DSDT) pilot has demonstrated that integrating AI with digital twin modeling, can 

decrease diagnostic latency by 35% and therefore demonstrates the viability of using real-time cognitive simulation [57]. 

International collaborative efforts between NASA, ESA and JAXA are also extending the ATLAS framework into an 

interagency AI partnership that focuses on space data interoperability, ethics and sustainability [58]. 

In conclusion, NASA's 3I ATLAS project represents a model for future AI empowered scientific ecosystems, which 

integrate automation, transparency and global collaboration for the next generation of space exploration [59][60]. 
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