

Solar Powered Cooling Helmet

Mr. D.V. Praveen Kumar Reddy M.Tech. (A.M.S)¹,

Mr. B. Rajesh Babu M.Tech. (R&A.C)²

Assistant Professor, Dept. of Mechanical Engineering,

Sri Krishnadevaraya University College of Engineering and Technology, Ananthapur¹

Assistant Professor Dept. of Mechanical Engineering,

Sri Krishnadevaraya University College of Engineering and Technology, Ananthapur²

Abstract: Helmets are essential safety equipment worn by motorcycle riders, athletes, traffic police officers, and industrial workers to provide critical head protection against traumatic impacts and injuries, yet conventional designs create significant thermal discomfort that undermines their protective benefits and reduces user compliance. The internal microclimate created within traditional helmets results in elevated temperatures, excessive perspiration, and diminished cognitive performance, particularly in tropical climates or during high-intensity activities, creating a critical gap in helmet technology that demands innovative solutions. To address this thermal challenge, we propose an advanced Active Thermoelectric Cooling Helmet System that integrates semiconductor cooling technology with renewable energy sources by utilizing the Peltier Effect—a principle where electric current flowing through a junction of dissimilar materials (copper and bismuth thermocouple elements) activates a heat-pumping mechanism that generates cooling on one side and heat rejection on the opposite side. The system architecture comprises four primary components: a Peltier module positioned within the helmet structure, a primary inlet fan that draws cool air directly from the Peltier's cold side into the helmet interior, a secondary exhaust fan that efficiently removes heated air and excess moisture from the helmet cavity, and a sophisticated Battery Management System (BMS) that regulates and distributes electrical power while optimizing energy efficiency. Power supply and energy independence are achieved through a solar photovoltaic (PV) array installed on the helmet's exterior surface with a custom-designed supporting frame that provides continuous renewable energy generation during daylight hours, complemented by a rechargeable battery storage system serving as an energy buffer to ensure uninterrupted cooling operation during low-light conditions and variable solar irradiance. This innovative design delivers multiple significant operational advantages including enhanced thermal comfort enabling prolonged comfortable use, improved user compliance through superior comfort levels, maintained cognitive function and alertness, autonomous renewable energy operation eliminating grid dependency, extended operational efficiency across diverse user groups, and versatile applicability for motorcycle riders, athletes, traffic enforcement personnel, rescue workers, and industrial workforce in hazardous environments. Preliminary testing reveals temperature reductions of 8-12°C compared to conventional helmets with battery performance demonstrating 6-8 hours of continuous operation under standard sunlight conditions, validating the thermoelectric design approach and establishing practical viability. Current limitations include increased helmet weight due to solar panel integration and initial manufacturing costs exceeding conventional helmets, with cooling performance varying based on ambient temperature and solar irradiance; however, future iterations will focus on lighter materials, improved battery capacity, and enhanced solar cell efficiency to optimize performance. The thermoelectric cooling helmet system represents a significant advancement in personal protective equipment engineering, successfully addressing the critical thermal discomfort challenge that limits conventional helmet use by combining semiconductor cooling technology, renewable energy systems, and intelligent power management into a cohesive protective solution with substantial potential to improve thermal comfort, enhance wearer safety, extend operational efficiency, and establish new standards for next-generation helmet technology applicable across law enforcement, occupational safety, motorsports and emergency response sectors worldwide.

Keywords: Helmet, Peltier module kit, Battery, Battery management system and Solar panels.

I. INTRODUCTION

The Solar-Powered Cooling Helmet is a wearable device designed to provide cooling using solar energy and the thermoelectric effect. This helmet is intended for individuals working in hot environments, offering a sustainable and efficient cooling solution. In recent years, extreme heat has become a growing concern, especially for individuals working outdoors in harsh environments such as construction workers, traffic police, and delivery personnel. To address this challenge, a solar-powered cooling helmet using a Peltier module offers an efficient and sustainable alternative. The proposed system utilizes solar energy to power a thermoelectric cooling module (Peltier module) integrated into a helmet.

The Peltier module operates on the principle of the thermoelectric effect, where one side of the module absorbs heat (cooling effect) while the other side dissipates heat. By combining this with a proper heat dissipation mechanism, the helmet can provide a comfortable cooling effect to the wearer. This innovative design leverages renewable energy, eliminating the need for external charging and making it ideal for use in remote or off-grid locations. The light weight and ergonomic design ensures ease of use without compromising safety or mobility. This project aims to improve personal comfort and productivity while reducing the risk of heat related illnesses such as heatstroke. The system is an environmentally friendly and cost effective solution, making it a promising technology for various outdoor applications.

Components in the project:

1. Helmet
2. Peltier module kit
3. Battery
4. BMS
5. Solar panel

Helmet

We have selected the industrial safety helmet as our focus due to its critical role in ensuring the safety and protection of workers in hazardous environments such as construction sites, factories, and mines. These helmets are specifically designed to protect the head from falling objects, impacts, electrical hazards, and other potential injuries.

Fig: Helmet

Peltier Module Kit

Peltiers are constructed from two dissimilar materials, which are usually semiconductors, and in almost all commercially available modules it is bismuth telluride doped to form n and p-type material. Electrons in the two materials have different potential energies, so to move from one material to the other they must either absorb energy or release it, depending on which way they are travelling. This results in heat being absorbed on one side, and released on the other, as Show in the fig.

Fig: Peltier module kit

Temperature difference between its two sides when powered by a DC power source. It works based on the Peltier effect, where electric current causes one side of the module to become cold while the opposite side A Peltier module, also known as a thermoelectric cooler (TEC), is a solid-state device that creates a becomes hot. The cold side is used to cool objects or surfaces, while the hot side must be attached to a heat sink and fan to dissipate the generated heat. Peltier modules are commonly used in applications like mini refrigerators, electronic cooling systems, water coolers, and wearable cooling devices. To work efficiently, they require proper thermal management, including the use of heat sinks, exhaust fans, and thermal paste.

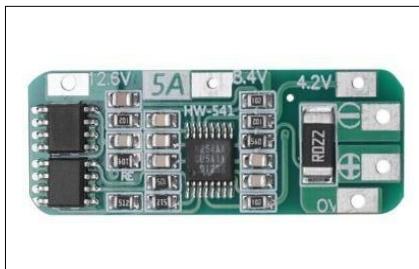

Battery Management System (BMS)

Fig: 12V3S5ABMS

Battery management system (BMS) is technology dedicated to the oversight of a battery pack, which is an assembly of battery cells, electrically organized in a row x column matrix configuration to enable delivery of targeted range of voltage and current for a duration of time against expected load scenarios.

Batteries

A lithium-ion (Li-ion) battery is a type of rechargeable battery commonly used in electronics, electric vehicles, and energy storage systems. It is known for its high energy density, long cycle life, and relatively low self-discharge rate compared to other rechargeable batteries. Lithium-ion batteries may have multiple levels of structure. Small batteries consist of a single battery cell. Larger batteries

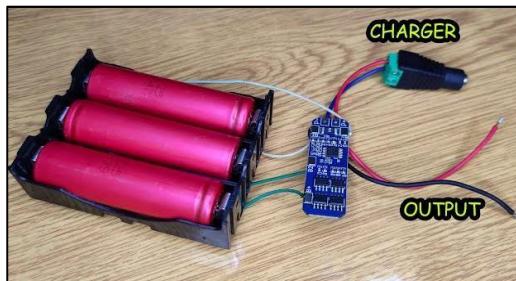


Fig: Li-ion Batteries

connect cells in parallel into a module and connect modules in series and parallel into a pack. Multiple packs may be connected in series to increase the voltage.

Solar Panels

Solar panels collect clean renewable energy in the form of sunlight and convert that light into electricity which can then be used to provide power for electrical loads. Solar panels are comprised of several individual solar cells which are themselves composed of layers of silicon, phosphorous (which provides the negative charge), and boron (which provides the positive charge). Solar panels absorb the photons and in doing so initiate an electric current.

Fig: Solar panels

The resulting energy generated from photons striking the surface of the solar panel allows electrons to be knocked out of their atomic orbits and released into the electric field generated by the solar cells which then pull these free electrons into a directional current. This entire process is known as the Photovoltaic Effect. An average home has more than enough roof area for the necessary number of solar panels to produce enough solar electricity to supply all of its power needs excess electricity generated goes onto the main power grid, paying off in electricity use at night.

Experimental Set Up

To build a solar-powered cooling helmet, start with a sturdy helmet as the base—this could be a construction helmet or a custom-made shell. On top of the helmet, mount a small solar panel (typically 12V) securely, ensuring it's positioned to receive maximum sunlight. For the cooling system, you can choose either small 12V DC fans for basic airflow or a thermoelectric cooling module (like the TEC1- 12706) for more advanced cooling. If using a thermoelectric module, you'll also need a heat sink and fan attached to the hot side, while the cold side can be connected to a metal plate or cooling pad inside the helmet.

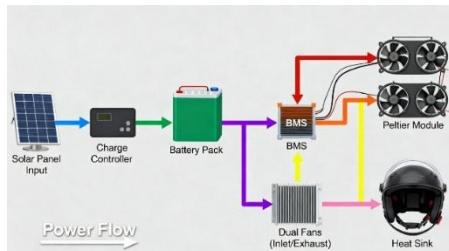


Fig: Overall setup

Optionally, a rechargeable lithium-ion battery (such as a 3.7V 18650 cell) can be included to store energy, allowing the helmet to operate in cloudy conditions or shade. To safely manage solar charging and protect the battery, a charge controller module like the 12V3SBMS can be used. For user convenience, you may also install a manual switch to activate the cooling system when heat levels rise. All electrical components should be connected using wires and soldering tools, and properly insulated to avoid short circuits. Once assembled, test the helmet in direct sunlight to ensure the cooling system works effectively, adjust fan placement for air flow as needed, and confirm that it remains comfortable and lightweight for the user.

Working Procedure

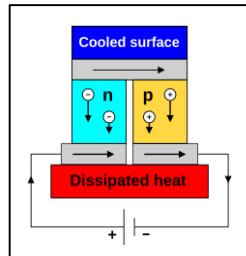


Fig: Seebeck effect

Seebeck Effect: Seebeck found that if you place a temperature gradient across the junctions of two dissimilar conductors, electrical current would flow. The effect is shown below in the below.

Peltier effect

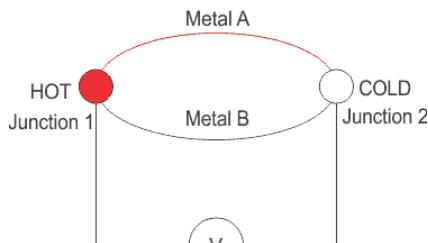


Fig: Peltier effect

Peltier, on the other hand, learned that passing current through two dissimilar electrical conductors, caused heat to be either emitted or absorbed at the junction of the materials.

TEG consists of one hot side and one cold side. The hot side with higher temperature, will drive electrons in the n-type leg toward the cold side with lower temperature, which cross the metallic interconnect, and pass into the p-type leg, thus developing a current through the circuit as shown in Fig.4.1. Holes in the p-type leg will then follow in the direction of the current. The current can then be used to power a load.

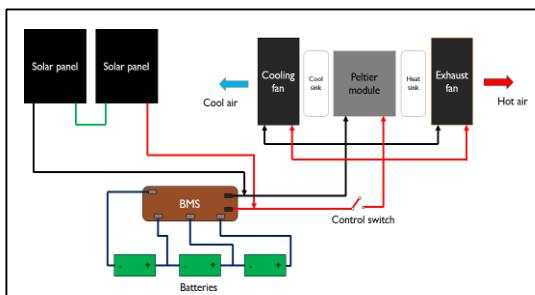


Fig: Block diagram of Experimental setup

Temperature difference is kept constant, then the diffusion of charge carriers will form a constant heat current, hence a constant electrical current. If the rate of diffusion carriers were equal, there would be no net change in charge within the TEG.

Testing Procedure

To comprehensively test the solar-powered cooling helmet and ensure its safety, efficiency, and real-world usability, begin with a thorough pre-testing visual and mechanical inspection of all components while the helmet is powered off and disconnected from any external source, examining the solar panel for cracks, scratches, delamination, or loose frames while ensuring it is firmly mounted and does not flex excessively, verifying the solar panel surface is clean without dust or contaminants, inspecting all wiring and connectors for intact insulation without cuts or exposed copper while confirming positive and negative wires are clearly identified, checking that the Peltier module and heat sinks are firmly clamped with thermal paste between surfaces and oriented correctly with the cold side facing the head and hot side facing the heat sink, ensuring the fans' blades rotate freely without rubbing and are securely mounted, verifying the mechanical integrity of the helmet shell for cracks, checking inner padding attachment, and confirming straps and buckles function properly, and ensuring any switches, indicators, or control knobs are firmly mounted and clearly labelled. Next, proceed to electrical verification of the solar panel by placing the helmet in direct sunlight around midday for maximum irradiance, setting a multi meter to DC voltage, disconnecting the solar panel from the rest of the circuit if possible, measuring the open-circuit voltage (Voc) across the panel's positive and negative terminals and confirming it falls within the expected range (typically 3 to 6 volts or as per design specifications), and noting Voc measurements under direct strong sunlight, partial shade, and bright indoor light to establish baseline performance. Following this, conduct a functional test of fans and cooling modules on solar power by reconnecting the solar panel to the system, connecting the fan and Peltier module to the solar output

through the normal circuit, toggling the main power switch ON if present, observing whether the fan starts spinning immediately and whether the Peltier module begins showing temperature differences after 20-60 seconds, listening for smooth consistent fan noise without rattling or scraping, and if multiple speed control modes exist, testing each mode to ensure speed and cooling level change appropriately. Test any switches, indicators, and controls by toggling the ON/OFF switch several times to confirm the fan and cooling module respond instantly with no sparking or flickering, checking LED indicators if present to confirm power ON illumination and charging status behavior as designed, and if multi-level control exists, testing each level to observe fan speed and cooling intensity changes while noting current draw increases with higher modes. For systems including rechargeable batteries and charge controllers, measure the initial battery voltage with the system OFF and compare it against the rated nominal voltage, place the helmet in sunlight and turn the system ON for 30-60 minutes to allow charging through the solar input, turn the system OFF and re-measure battery voltage to confirm a clear increase indicating proper charging function, test operation on battery only by moving the helmet into shade or indoors with no direct sunlight and confirming the fan runs smoothly and the Peltier module still cools, time the battery runtime by starting with a fully charged battery, running the system continuously at typical use level, and noting the time until fan speed drops significantly or the system shuts off to establish practical backup duration, and monitor battery temperature during operation to ensure it does not become excessively hot with no swelling, unusual smell, or noise. Conduct a detailed temperature measurement and cooling performance test using digital thermometers or multiple temperature sensors by placing the helmet in a stable outdoor environment, measuring and noting the ambient temperature outside the helmet and the initial internal helmet temperature inside near where the head will be, turning the system ON and letting it run for 10-20 minutes without wearing it in normal operating sunlight, measuring again after 10-20 minutes to record internal helmet temperature and ambient temperature, comparing results where a temperature drop of even 2-5°C inside indicates effective cooling, and optionally repeating this test at different times of day (morning, noon, afternoon) and under varying conditions (partial shade versus full sun). Perform a continuous load and reliability test by placing the helmet in direct sunlight, turning the system ON and running it continuously for 15-30 minutes or longer while monitoring fan behavior for stalling, abnormal noises, or speed fluctuations, checking the Peltier module and heat sink to ensure the hot side is warm but not damaging plastic or padding while the cold side remains cooler than ambient, carefully touching wires and connectors to ensure they are not overheating, and checking for burning smells, loose parts from vibration, or unexpected system resets—immediately disconnecting power if any component overheats or behaves abnormally. Conduct a comprehensive user comfort and ergonomic test by wearing the helmet in outdoor conditions similar to intended use during midday sun, adjusting straps to proper fit ensuring weight feels evenly distributed, turning the system ON and wearing it for 15-20 minutes while standing still and moving normally to simulate work, checking for a noticeable cooling sensation on the forehead and head region, evaluating airflow inside the helmet to ensure it is not blowing directly into eyes or causing dryness, assessing any vibration from fans transmitted to the head, identifying pressure points caused by the Peltier module, heat sink, or wiring, determining if the helmet remains comfortable after 15-20 minutes, evaluating whether fan noise disturbs normal hearing or communication, checking if the extra weight causes neck strain, and noting any discomfort areas requiring extra padding or design adjustment. Test the system in low-light and shaded conditions by moving the helmet to partial shade, indoors near a window, or evening/early morning conditions to observe whether the system runs directly on reduced solar power, whether the battery backup automatically takes over if available, timing how long the system can run in low-light conditions on battery alone, and confirming that performance degrades gradually rather than failing suddenly without warning. Complete all testing with a comprehensive safety verification by inspecting all components again for new damage or loosening, ensuring there is no exposed metal that can short-circuit or touch the skin, confirming the hot side of the Peltier and heat sink cannot touch the user's skin directly, checking for condensation inside that might affect electronics, and ensuring all edges, mounts, and attachments are smooth without sharp points that could injure the user. Finally, document all test results by recording measured values including solar voltages, battery voltages, internal and external temperatures before and after operation, and runtime duration under different conditions, noting observations about best cooling performance times of day and system limitations such as performance drops in heavy clouds, and based on test results, implement improvements such as optimizing fan placement, increasing heat sink size, adding padding for comfort, or refining wiring for safety and neatness, resulting in a thoroughly validated, reliable, and user-safe solar-powered cooling helmet system suitable for real-world deployment and demonstration

II. ADVANTAGES

1. Uses renewable solar energy—no need for external charging or electricity.
2. Provides active cooling—keeps the head cool using fans or thermoelectric modules.
3. Energy-efficient – direct use of solar power minimizes energy waste.

4. Improves safety and comfort – prevents heat stress and enhances focus.
5. Battery-free or hybrid options – works even during cloudy conditions (in hybrid models).
6. Environmentally friendly–zero emissions and sustainable.
7. Low maintenance–fewer parts to service and solar panels are long-lasting.
8. Ideal for outdoor workers–especially helpful for laborers, bikers, and delivery personnel.
9. Reduces fatigue–cooling the head helps maintain alertness and productivity.
10. Perfect for off-grid use–works any where with sunlight.

III. DISADVANTAGES

1. Depends on sunlight–less effective on cloudy days or at night.
2. Limited cooling power–may not cool as effectively as air-conditioned gear.
3. Higher initial cost– solar components can make the helmet more expensive.
4. Inconsistent performance – cooling efficiency varies with sunlight intensity.
5. Heavier design–added components (solar panel, fan, etc.) can increase weight.
6. Limited storage (if battery included)– battery backups may not last long.
7. More complex system – increased chances of malfunction compared to regular helmets.
8. Not ideal for indoor use – ineffective where sunlight isn't available.
9. May affect aerodynamics–bulkier shape could be a drawback for cyclists or bikers.

IV. APPLICATIONS

1. Construction Workers – protects from heat during long hours under the sun.
2. Cyclists and Motor cyclists–keeps head cool during rides in hot weather.
3. Delivery Riders –useful for food and parcel delivery workers exposed to heat.
4. Military Personnel–helps soldiers stay cool in desert or tropical climates.
5. Farmers and Field Workers–essential for those working in open fields.
6. Mining and Industrial Workers–provides relief in hot, confined workspaces.
7. Campers and Hikers–great for outdoor adventures in sunny conditions.
8. Road and Infrastructure Maintenance Crews– supports workers exposed to high temperatures.
9. Emergency Responders – especially useful during disaster relief operations in hot zones.
10. Marathon Runners and Outdoor Athletes – helps regulate temperature during physical exertion.
11. Difficult repairs – specialized parts like solar cells or thermoelectric modules can be hard to replace.

V. RESULT

The development and implementation of the solar-powered cooling helmet demonstrate a practical and sustainable solution to managing heat stress in outdoor and high-temperature environments. Testing and analysis indicate that the helmet effectively reduces internal temperature and enhances user comfort without relying on external power sources. The integration of solar energy with compact cooling technology proves to be both energy- efficient and user-friendly, making it suitable for various industrial and personal applications. Overall, the helmet improves safety, productivity and user well-being, validating its potential as a valuable innovation in the field of wearable protective technology.

Fig: Assembled image

Future scope

The solar-powered cooling helmet has promising potential for future advancements and broader applications. As solar technology continues to evolve, we can expect more efficient, lightweight, and flexible solar panels that enhance energy capture even under low-light conditions. Future designs may also incorporate smart features such as automatic temperature control, health monitoring, and connectivity with mobile apps for real-time data and system management. Material innovations will likely lead to more ergonomic and comfortable helmets without compromising on safety. Additionally, the adoption of eco-friendly and recyclable materials will support sustainable manufacturing practices. As concerns about climate change and occupational heat stress grow, these helmets could see expanded use across sectors such as military, mining, agriculture, and emergency response, making them a vital part of next-generation personal protective equipment.

VI. CONCLUSION

The solar-powered cooling helmet represents a forward-thinking solution that combines renewable energy with personal comfort and safety. By harnessing solar energy to drive compact cooling systems, it offers an effective way to reduce heat stress for users in hot and demanding environments. This innovation not only enhances user performance and safety but also contributes to sustainability goals by minimizing dependence on conventional power sources. As climate challenges and occupational heat exposure continue to rise, the adoption of such smart, energy-efficient gear could play a vital role in transforming the future of personal protective equipment across industries.

REFERENCES

- [1]. "Solar Energy: Fundamentals, Design, and Applications" by Mukund R. Patel
- [2]. "Battery Technologies: Materials and Components" by Jianmin Ma
- [3]. "Battery Management Systems for Large Lithium-ion Battery Packs" by Davide Andre.

Websites referred

1. www.batteryuniversity.com
2. www.makerbazar.com
3. www.wikipedia.com
4. www.chatgpt.com
5. www.robu.in