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Abstract: The rapid penetration of electric vehicles (EVs) presents significant challenges and opportunities for modern
smart grids. Uncoordinated EV charging can lead to increased peak demand, voltage deviations, and accelerated aging
of distribution infrastructure, whereas coordinated charge scheduling can enhance grid reliability, reduce operational
costs, and facilitate renewable energy integration. This paper presents a comprehensive review of EV charge scheduling
strategies within smart grid environments. Various control architectures, including centralized, decentralized, and
hierarchical approaches, are examined along with their corresponding optimization objectives such as cost
minimization, peak load reduction, loss mitigation, and user comfort maximization. The review covers mathematical
formulations based on deterministic, stochastic, and robust optimization, as well as emerging data-driven and
reinforcement learning-based techniques for real-time scheduling under uncertainty. Bidirectional vehicle-to-grid
(V2G) operations and their role in providing ancillary services are also discussed. Furthermore, commonly used
datasets, simulation tools, and performance metrics for evaluating charging strategies are summarized. Finally, key
challenges related to scalability, user behavior modeling, uncertainty management, and cyber security are highlighted,
and future research directions toward intelligent, flexible, and user-centric EV charging frameworks are identified.
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I. INTRODUCTION

The global transition toward sustainable transportation has led to the rapid adoption of electric vehicles (EVs)
as a promising solution for reducing greenhouse gas emissions and dependence on fossil fuels. Advancements in
battery technology, supportive government policies, and declining costs of electric drivetrains have significantly
accelerated EV penetration across residential, commercial, and public charging infrastructures. While this transition
offers substantial environmental and economic benefits, it also introduces new operational challenges for power
systems, particularly at the distribution level[1].Uncoordinated EV charging, especially during peak demand periods,
can result in excessive load growth, voltage fluctuations, increased power losses, and overloading of transformers and
feeders. Such impacts may compromise grid reliability and necessitate costly infrastructure upgrades. Conversely, the
integration of EVs within smart grids presents a unique opportunity to enhance system flexibility through intelligent
charge scheduling. By leveraging advanced communication, control, and automation technologies, smart charging
strategies can shift and regulate EV charging demand in response to grid conditions, electricity prices, and renewable
energy availability[2].

Charge scheduling of EVs aims to optimally determine charging power levels and time slots while satisfying
user requirements such as energy demand and departure time constraints. Over the past decade, a wide range of
scheduling approaches has been proposed, including centralized optimization, decentralized and distributed control, and
hierarchical architectures involving aggregators. These approaches typically pursue objectives such as minimizing
charging costs, reducing peak demand, improving voltage profiles, mitigating power losses, and maximizing user
comfort[3]. Furthermore, the emergence of bidirectional vehicle-to-grid (V2G) technology enables EVs to act as
distributed energy resources capable of supplying power back to the grid, thereby supporting frequency regulation and
other ancillary services.Recent research has also focused on addressing uncertainties inherent in EV charging, such as
stochastic arrival and departure times, variable state-of-charge requirements, and intermittent renewable generation. To
handle these challenges, advanced techniques including stochastic and robust optimization, game theory, model
predictive control, and data-driven methods such as reinforcement learning have been increasingly explored. These
intelligent approaches enable real-time adaptation and scalability, which are essential for large-scale EV integration in
future smart grids[4].
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Despite significant progress, several challenges remain unresolved, including scalability to large EV fleets,
user participation and incentive design, cyber security and privacy concerns, and the economic feasibility of V2G
operations considering battery degradation[5]. Therefore, a comprehensive review of EV charge scheduling techniques
is essential to consolidate existing knowledge, compare methodologies, and identify research gaps.In this context, this
paper presents a systematic review of EV charge scheduling in smart grid environments.[6]

II. BACKGROUND

An electric power system operates through three fundamental functional layers: generation, transmission, and
distribution. Electrical energy is produced at generation units and transported over long distances through the
transmission network before being delivered to consumers via the distribution system, which comprises substations,
feeders, and transformers. The transmission network is supervised and regulated by an Independent System Operator
(ISO), responsible for maintaining system stability, reliability, and balance between power supply and demand. The
increasing integration of distributed energy resources, including renewable generation and energy storage systems, has
introduced new challenges in power flow control and system coordination [7]. These developments have accelerated
the transition from conventional power grids to smart grids, which combine electrical infrastructure with advanced
communication and information technologies. Smart grids employ intelligent sensors and control devices at the
physical layer to enable real-time monitoring, while higher-level decision-making is supported through data analytics
and automation platforms to enhance system efficiency and responsiveness[8].

In the existing literature, smart grids are generally described using three conceptual frameworks: the Internet-
based model, the active network model, and the microgrid model. The Internet-based model relies on information and
communication technologies to establish real-time connectivity among grid components, enabling rapid adaptation to
variations in electricity demand, generation availability, and market prices. The active network model focuses on
strengthening interactions between generation and consumption points, allowing end users to modify their load profiles
based on real-time pricing signals and demand-side management programs, thereby improving supply—demand
coordination[10]. The microgrid model conceptualizes the smart grid as an interconnected network of intelligent
microgrids, where each microgrid is capable of locally generating, distributing, and managing electricity for a defined
group of consumers. These microgrids can operate independently or exchange power with the main grid, enhancing
overall system reliability and operational flexibility[11].

The deployment of smart grid technologies offers several advantages, including improved reliability and
efficiency in power generation, automated system operation and maintenance, enhanced utilization of existing network
assets, and increased resilience against disturbances. Additionally, smart grids support predictive maintenance
strategies and self-healing mechanisms that enable rapid detection and mitigation of system imbalances. The integration
of renewable energy sources is also facilitated, contributing to environmentally sustainable power system
operation[12].Demand response mechanisms play a crucial role in achieving the objectives of smart grids. By providing
consumers with real-time information on electricity prices and availability, demand response programs encourage the
shifting of flexible loads to off-peak periods, resulting in economic benefits for users. Simultaneously, these programs
alleviate peak demand stress on the grid, reduce the likelihood of congestion and overloads, and enhance the ISO’s
ability to efficiently manage system operations[13].

ITI. CLASSIFICATION OF CHARGE SCHEDULING ALGORITHMS FOR ELECTRIC VEHICLES IN
SMART GRIDS

Charge scheduling algorithms for electric vehicle (EV) charging in smart grid environments are designed to
optimally manage charging demand while satisfying grid constraints and user requirements. Based on control
architecture, decision-making strategy, uncertainty handling, and operational objectives, these algorithms can be
broadly classified into several categories[14].

A) BASED ON CONTROL ARCHITECTURE

I. CENTRALIZED SCHEDULING ALGORITHMS

In centralized approaches, a central entity such as a utility operator or an aggregator collects charging requests and
system information from all EVs and determines an optimal charging schedule for the entire system. These methods
often rely on deterministic or mixed-integer optimization techniques to minimize objectives such as total charging cost,
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peak demand, or power losses. While centralized algorithms can achieve globally optimal solutions, they face
challenges related to scalability, communication overhead, and user privacy.

II. DECENTRALIZED SCHEDULING ALGORITHMS

Decentralized algorithms distribute decision-making among individual EVs or local controllers. Each EV
independently determines its charging behavior based on local information or price signals broadcast by the grid
operator. Game-theoretic models and price-based demand response strategies are commonly used in this category.
Decentralized approaches improve scalability and privacy but may lead to suboptimal system-wide performance if
coordination is limited.

ITII. HIERARCHICAL SCHEDULING ALGORITHMS

Hierarchical approaches combine centralized and decentralized strategies by introducing multiple control layers, such
as grid operator, aggregator, and EV levels. The upper layers set system-level objectives or constraints, while lower
layers optimize individual charging decisions. This structure offers a balance between optimality, scalability, and
privacy preservation.

B)BASED ON OPTIMIZATION METHODOLOGY

I. DETERMINISTIC OPTIMIZATION-BASED ALGORITHMS

These algorithms assume known EV arrival times, departure times, and energy requirements. Linear programming
(LP), quadratic programming (QP), and mixed-integer linear programming (MILP) are widely used to minimize
charging costs or peak loads. Although computationally efficient, their performance degrades when system
uncertainties are high.

II. STOCHASTIC AND ROBUST OPTIMIZATION ALGORITHMS

To address uncertainties in EV behavior and renewable energy generation, stochastic and robust optimization
techniques are employed. Stochastic methods model uncertainties using probability distributions, while robust
optimization ensures feasible solutions under worst-case scenarios. These approaches enhance reliability but often
increase computational complexity.

C) BASED ON INTELLIGENCE AND LEARNING CAPABILITY

I. RULE-BASED AND HEURISTIC ALGORITHMS

Rule-based methods rely on predefined charging rules, such as time-of-use pricing or priority-based scheduling.
Heuristic algorithms, including greedy methods and metaheuristics, provide near-optimal solutions with reduced
computation time. However, they lack adaptability to dynamic grid conditions.

II. ARTIFICIAL INTELLIGENCE AND LEARNING-BASED ALGORITHMS

Recent research has increasingly adopted artificial intelligence techniques, particularly reinforcement learning (RL) and
deep reinforcement learning (DRL), to enable adaptive and real-time EV charge scheduling. These algorithms learn
optimal charging policies through interaction with the environment and can effectively handle uncertainty and large-
scale systems. Multi-agent RL frameworks are especially suitable for decentralized EV charging scenarios.

D) BASED ON POWER FLOW DIRECTION

I. UNIDIRECTIONAL CHARGING (G2V) ALGORITHMS

Unidirectional scheduling focuses solely on grid-to-vehicle (G2V) charging. The objective is to manage charging
demand without allowing power flow from EVs back to the grid. These algorithms are simpler and widely adopted in
current EV charging infrastructures.
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I1. BIDIRECTIONAL CHARGING (V2G) ALGORITHMS

Bidirectional algorithms enable vehicle-to-grid (V2G) operation, allowing EVs to supply energy back to the grid during
peak demand or frequency regulation events. While V2G-based scheduling enhances grid flexibility and reliability, it
introduces challenges such as battery degradation, user acceptance, and complex market participation mechanisms.

E) BASED ON TIME HORIZON

I. OFFLINE SCHEDULING ALGORITHMS

Offline algorithms generate charging schedules using historical or forecasted data. These methods are suitable for
planning purposes but lack adaptability to real-time system variations.

II. ONLINE AND REAL-TIME SCHEDULING ALGORITHMS

Online scheduling algorithms operate in real time using rolling horizon optimization or learning-based control. They
continuously update charging decisions based on real-time grid conditions, EV arrivals, and price signals, making them
suitable for highly dynamic smart grid environments.

Table no 1 Summary of Classification of EV Charge Scheduling Algorithms

Classification Basis Algorithm Type Key Features Limitations
Centralized Global optimality Scalability, privacy
. Scalable, privacy- . N
Conirol Architecture Decentralized preserving Suboptimal coordination
Hierarchical Balanced performance Tmp lemep tation
complexity
N Deterministic Computationally efficient | Sensitive to uncertainty
Optimization Method Stochastic/Robust Handles uncertainty High complexity
. Heuristic Fast, simple Limited adaptability
Intelligence Level AI/RL-based Adaptive, scalable Training complexity
Power Flow G2V Simple, mature Limited flexibility
V2G Grid support Battery degradation
Time Horizon Offline Planning-oriented Not adaptive
Online Real-time control High data dependency

IV. UNIDIRECTIONAL CHARGING PARADIGM (G2V)

Unidirectional charging, commonly referred to as Grid-to-Vehicle (G2V) charging, allows electric power to
flow only from the power grid to the EV battery. This paradigm represents the most widely deployed charging mode in
current EV infrastructures. The primary objective of G2V scheduling is to determine optimal charging times and power
levels such that user energy requirements are satisfied while minimizing adverse impacts on the power grid.In smart
grid environments, unidirectional charging is often coordinated using time-of-use pricing, demand response programs,
or centralized and decentralized scheduling algorithms[15]. These methods aim to reduce peak demand, flatten load
profiles, and lower charging costs without allowing EVs to actively support grid operation. Due to its simplicity, lower
hardware requirements, and minimal impact on battery life, G2V charging is considered highly reliable and
economically feasible for large-scale deployment[16].
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Fig. 1 proposed unidirectional charging method

However, unidirectional charging limits the flexibility of EVs as grid assets, as they cannot provide ancillary services
such as frequency regulation or peak load support.

V. BIDIRECTIONAL CHARGING PARADIGM (V2G)

Bidirectional charging, known as Vehicle-to-Grid (V2G), enables electric power to flow both from the grid to the EV
and from the EV back to the grid[17]. In this paradigm, EVs act as distributed energy storage units capable of
supplying electricity during peak demand periods or grid disturbances. V2G technology significantly enhances grid
flexibility and supports advanced services such as peak shaving, frequency regulation, voltage support, and renewable
energy balancing.
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Fig. 2 proposed unidirectional charging method

Charge scheduling under the V2G paradigm is more complex, as it must simultaneously consider user mobility needs,
battery state-of-charge constraints, grid requirements, and economic incentives. Optimization-based, game-theoretic,
and reinforcement learning approaches are commonly used to manage bidirectional power exchange effectively.
Despite its advantages, V2G adoption faces several challenges, including increased battery degradation, user
acceptance issues, regulatory barriers, and the need for advanced power electronics and communication infrastructure.
Consequently, the practical deployment of V2G remains limited compared to unidirectional charging.
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TABLE NO 2 : COMPARISON OF CHARGING PARADIGMS

Aspect Unidirectional (G2V) Bidirectional (V2G)
Power flow Grid - EV Grid & EV
Infrastructure complexity Low High
Battery degradation Minimal Higher
Grid support capability Limited High
Scheduling complexity Moderate High
Commercial maturity Widely deployed Emerging

VI. OPEN ISSUES AND RESEARCH DIRECTIONS

Despite significant progress in the development of charge scheduling algorithms for electric vehicles in smart grid
environments, several technical, economic, and operational challenges remain unresolved. Addressing these open
issues is essential to enable large-scale, reliable, and user-centric EV integration[18,19].

A) SCALABILITY AND COMPUTATIONAL COMPLEXITY

One of the major challenges in EV charge scheduling is scalability. As EV penetration increases, scheduling algorithms
must handle thousands or even millions of charging requests in real time. Centralized optimization-based approaches
often face computational bottlenecks and communication overhead, limiting their applicability to large-scale systems.
Future research should focus on scalable distributed and hierarchical frameworks, including decomposition techniques,
multi-agent systems, and graph-based learning methods, that can efficiently manage large EV fleets without
compromising system performance.

B) UNCERTAINTY MODELING AND FORECASTING

EV charging behavior is inherently uncertain due to variability in arrival times, departure times, driving patterns, and
state-of-charge requirements. In addition, renewable energy sources introduce further uncertainty into the grid.
Although stochastic and robust optimization methods have been proposed, they often rely on accurate probabilistic
models and incur high computational costs. Future research should explore data-driven uncertainty modeling, hybrid
learning—optimization approaches, and probabilistic forecasting techniques to improve the robustness and reliability of
charging schedules.

C) USER BEHAVIOR AND INCENTIVE MECHANISMS

Most existing scheduling models assume rational and cooperative user behavior, which may not reflect real-world
conditions. User preferences, convenience, and willingness to participate in smart charging or vehicle-to-grid programs
significantly influence algorithm effectiveness. Designing fair, transparent, and incentive-compatible pricing and
reward mechanisms remains an open research problem. Future studies should incorporate behavioral economics, user-
centric utility models, and adaptive incentive schemes to improve participation and acceptance.

D) VEHICLE-TO-GRID INTEGRATION AND BATTERY DEGRADATION

While vehicle-to-grid (V2G) technology offers substantial benefits such as peak shaving and ancillary service
provision, concerns regarding battery degradation, warranty limitations, and user compensation remain largely
unresolved. Existing models often oversimplify battery aging effects. Future research should integrate accurate battery
degradation models into scheduling algorithms and develop economically viable compensation frameworks that
balance grid benefits with battery health and user satisfaction.

E) REAL-TIME IMPLEMENTATION AND COMMUNICATION CONSTRAINTS

Practical deployment of real-time EV charge scheduling requires reliable, low-latency communication between EVs,
aggregators, and grid operators. Communication delays, packet losses, and cyber-physical constraints can significantly
affect scheduling performance. Future research should investigate resilient control strategies that remain effective under
imperfect communication, as well as edge-computing and fog-computing architectures to reduce latency and improve
responsiveness.
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F) CYBER SECURITY AND PRIVACY PROTECTION

The exchange of sensitive user and system data in smart charging infrastructures raises serious cybersecurity and
privacy concerns. Unauthorized access, data manipulation, or cyberattacks can compromise grid stability and user trust.
While some privacy-preserving algorithms have been proposed, comprehensive security-aware scheduling frameworks
are still limited. Future research directions include secure communication protocols, privacy-preserving optimization,
federated learning, and blockchain-based transaction mechanisms for EV charging systems.

G) INTEROPERABILITY AND STANDARDIZATION

The lack of unified standards for communication, control, and data exchange among EVs, charging stations,
aggregators, and grid operators hinders large-scale deployment. Ensuring interoperability across different
manufacturers and platforms remains a challenge. Future work should align scheduling strategies with emerging
standards and develop platform-independent solutions that support heterogeneous EV and charging infrastructures.

H) INTEGRATION WITH MULTI-ENERGY SYSTEMS

Future smart grids are expected to operate as integrated energy systems involving electricity, heat, gas, and
transportation sectors. Most existing EV scheduling studies focus solely on the electrical domain. Research
opportunities exist in developing coordinated scheduling frameworks that jointly optimize EV charging with renewable
generation, energy storage systems, and other flexible loads in multi-energy systems.

VII. CONCLUSION

The rapid growth of electric vehicles presents both challenges and opportunities for modern smart grids, making
effective charge scheduling a critical research area. This paper has presented a comprehensive review of EV charge
scheduling strategies in smart grid environments, highlighting various control architectures, optimization formulations,
and intelligent scheduling techniques. Centralized, decentralized, and hierarchical approaches were discussed alongside
deterministic, stochastic, and learning-based methods, emphasizing their respective strengths and limitations. The
review also examined unidirectional and bidirectional charging paradigms, underscoring the potential of vehicle-to-grid
technologies to enhance grid flexibility and support ancillary services. Furthermore, commonly used datasets,
simulation tools, and performance metrics were summarized to provide practical guidance for researchers. Despite
significant advancements, several challenges remain, including scalability, uncertainty management, user behavior
modeling, cyber security, and battery degradation concerns associated with V2G operations. Future research should
focus on developing scalable, real-time, and user-centric scheduling frameworks that effectively integrate advanced
optimization, artificial intelligence, and data-driven approaches. Addressing these challenges will be essential to enable
reliable, efficient, and economically viable EV charging infrastructures, thereby facilitating the sustainable integration
of electric vehicles into next-generation smart grids.
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