

TradeNexus AI – AI that Thinks Finance

Harish H K¹, Moin Shariff², Mohammed Maaz³, Usama Azeem⁴, Mohamed Sufyan⁵

Assistant Professor, Department of Computer Science and Engineering, Maharaja Institute of Technology, Mysore, Karnataka, India¹

Undergraduate Student, Department of Computer Science and Engineering, Maharaja Institute of Technology, Mysore, Karnataka, India²⁻⁵

Abstract: The increasing complexity and volatility of modern financial markets have amplified the challenges faced by individual investors in making timely and informed trading decisions. While institutional participants benefit from advanced analytical infrastructures, retail investors often rely on fragmented tools that lack real-time intelligence, integration, and interpretability. TradeNexus AI – AI that Thinks Finance addresses this disparity by presenting an AI-driven decision support platform designed to assist investors through unified, explainable, and data-informed market insights. The system focuses on reducing information overload and emotional bias by transforming diverse financial data into structured, actionable guidance.

TradeNexus AI integrates three complementary dimensions of market intelligence: technical analysis, fundamental analysis, and news-based sentiment analysis. Technical indicators such as RSI, MACD, and SMA capture short-term market momentum, while fundamental evaluation of financial ratios assesses long-term asset strength. In parallel, natural language processing models analyze financial news to quantify market sentiment. These heterogeneous signals are synthesized through a Weighted Fusion Decision Engine, which generates Buy, Sell, or Hold insights based on consensus logic, thereby enhancing decision reliability without relying on a single analytical perspective.

The platform is implemented using a scalable web architecture comprising a responsive frontend, a modular backend, integrated AI processing components, and a PostgreSQL-based data storage layer for secure management of user and portfolio information. By combining real-time analytics, artificial intelligence, and an interactive user experience, TradeNexus AI demonstrates how intelligent decision-support systems can democratize access to advanced financial analysis tools, enabling individual investors to engage with financial markets in a more structured, confident, and informed manner.

Keywords: Artificial Intelligence, Algorithmic Trading Decision Support, Stock Market Analysis, Technical Analysis, Fundamental Analysis, Sentiment Analysis, Machine Learning, Natural Language Processing, Weighted Fusion Decision Engine

I. INTRODUCTION

The rapid growth of financial markets, combined with the availability of real-time data and global news streams, has significantly increased the complexity of trading and investment decision-making. While institutional investors leverage sophisticated algorithmic systems and advanced analytics, individual retail investors often rely on fragmented platforms that provide limited indicators, delayed insights, and minimal personalization. This imbalance creates a structural disadvantage for retail participants, who must interpret large volumes of technical data, financial fundamentals, and market sentiment without adequate decision-support tools.

Recent advancements in artificial intelligence and machine learning have opened new opportunities to address these challenges by enabling automated data processing, intelligent pattern recognition, and real-time insight generation. However, many existing solutions focus on isolated analytical techniques such as technical indicators or sentiment signals without effectively integrating multiple dimensions of market intelligence. As a result, decision-making remains prone to noise, bias, and over-reliance on single-factor analysis, limiting the reliability and interpretability of generated trading signals.

TradeNexus AI – AI that Thinks Finance is proposed as an AI-driven, web-based algorithmic trading decision support platform designed to bridge this gap. The system integrates technical analysis, fundamental analysis, and news-based sentiment analysis into a unified analytical framework. By leveraging machine learning models and natural language processing techniques, TradeNexus AI transforms heterogeneous financial data into structured insights that assist

investors in evaluating market conditions and potential investment actions. A key feature of the platform is its Weighted Fusion Decision Engine, which synthesizes outputs from multiple analytical streams to generate consensus-based Buy, Sell, or Hold recommendations, thereby improving decision robustness while avoiding over-dependence on any single indicator.

The platform is implemented using a scalable and modular architecture that combines a responsive web interface, a secure backend processing layer, integrated AI modules, and a PostgreSQL-based data storage layer for managing user credentials, sessions, and portfolio holdings. In addition to analytical capabilities, TradeNexus AI emphasizes usability and interpretability through interactive dashboards, portfolio management tools, and an AI-powered conversational assistant that simplifies complex financial concepts. By focusing on informed decision support rather than automated trade execution, the system aims to reduce emotional bias, enhance financial literacy, and enable individual investors to engage with dynamic financial markets in a more structured, confident, and data-driven manner.

II. LITERATURE REVIEW

Algorithmic trading has gained significant prominence as a systematic approach to analyzing financial markets by leveraging predefined rules and quantitative indicators. Kumbhare et al. [1] proposed an algorithmic trading strategy based on technical indicators such as Average Directional Index, Supertrend, and Fibonacci Pivot Points to identify trends and generate trading signals. Their study demonstrates that indicator-driven strategies can support informed decision-making by reducing emotional bias. However, the approach remains heavily dependent on historical price patterns and fixed rule sets, which may limit adaptability under volatile or rapidly changing market conditions.

With the increasing availability of large-scale financial data, predictive analytics and machine learning techniques have been introduced to enhance algorithmic trading performance. Agal and Odedra [2] examined the impact of predictive analytics on algorithmic trading strategies and highlighted improvements in strategy efficiency and profitability through data-driven models. Their work emphasizes the role of advanced analytics in identifying complex market patterns beyond traditional indicators. Nevertheless, the study primarily focuses on performance enhancement and offers limited discussion on explainability and user-oriented decision support, which are crucial for practical adoption by retail investors.

A comprehensive overview of artificial intelligence applications in financial trading is presented by Dakalbab et al. [3], who conducted a systematic literature review covering machine learning, deep learning, and hybrid AI techniques. Their findings indicate that integrating technical analysis, sentiment analysis, and ensemble models can improve trading outcomes. At the same time, the authors identify key challenges including overfitting, data quality issues, and lack of interpretability in AI-based trading systems. This highlights the need for frameworks that balance analytical intelligence with transparency and robustness.

From a market-structure perspective, Jaya Sankar Krishna et al. [4] reviewed algorithmic strategies employed in high-frequency trading, categorizing them into market making, arbitrage, momentum-based, and news-driven approaches. Their study discusses the role of low-latency infrastructure and automation in improving execution efficiency while also addressing concerns related to market volatility, regulatory compliance, and ethical risks. Although high-frequency trading differs from retail-focused systems, the analysis provides valuable insights into the broader implications of algorithmic strategies on financial markets.

The macro-level impact of artificial intelligence on financial markets is further explored by Kumar et al. [5], who analyzed how AI-driven algorithmic trading influences liquidity, efficiency, and trading behavior. Their case study highlights the benefits of AI adoption, such as reduced human bias and improved processing speed, while also acknowledging regulatory and governance challenges. However, the study places greater emphasis on market-wide effects rather than individualized investor support or explainable decision-making.

Recent studies have also examined the broader market implications of algorithmic trading systems. Research on the effect of algorithmic trading on stock market volatility highlights how automated strategies can influence price dynamics and market stability [6].

Overall, existing literature demonstrates that while algorithmic trading and AI-driven strategies have significantly advanced market analysis, most approaches operate in isolation, focusing either on technical indicators, predictive analytics, or sentiment signals. There exists a clear research gap in developing integrated and explainable decision-support systems that combine multiple analytical dimensions within a unified framework. TradeNexus AI addresses this

gap by adopting a weighted fusion approach that synthesizes technical, fundamental, and sentiment-based analysis to generate actionable Buy, Sell, or Hold insights tailored for individual investors.

III. EXISTING SYSTEM

Traditional trading and investment platforms available to retail investors primarily rely on basic charting tools, isolated technical indicators, and manually interpreted financial data. Most existing systems provide fragmented views of the market, where technical analysis, fundamental information, and market news are accessed through separate tools or platforms. As a result, investors are required to manually correlate multiple data sources, increasing cognitive load and the likelihood of subjective or emotion-driven decisions, particularly during periods of high market volatility.

While algorithmic trading systems are widely adopted by institutional participants, these solutions typically emphasize automated execution, high-frequency strategies, or complex quantitative models that are not accessible or interpretable for individual investors. Existing retail-focused platforms often lack intelligent data fusion mechanisms, offering indicator-level signals without contextual validation from fundamentals or market sentiment. Furthermore, explainability remains limited, as most systems do not provide clear reasoning behind generated insights, reducing user trust and decision confidence.

Additionally, current systems provide minimal support for personalized portfolio management and interactive guidance. Investor interactions are generally limited to static dashboards and predefined alerts, with little integration of conversational or adaptive interfaces. The absence of unified decision-support frameworks that combine analytical intelligence, user-centric design, and secure data management highlights a critical gap in existing solutions. These limitations motivate the need for an integrated, AI-driven platform that can synthesize diverse market signals into structured, explainable insights tailored to individual investors.

IV. PROPOSED SYSTEM

TradeNexus AI is proposed as an AI-driven, web-based decision support platform designed to assist individual investors in analyzing financial markets through a unified and intelligent framework. The system aims to overcome the limitations of fragmented analysis by integrating technical indicators, fundamental financial metrics, and market sentiment into a single analytical pipeline. Rather than focusing on automated trade execution, the platform emphasizes informed decision-making by generating structured Buy, Sell, or Hold insights that support investors in evaluating market conditions with greater clarity and confidence.

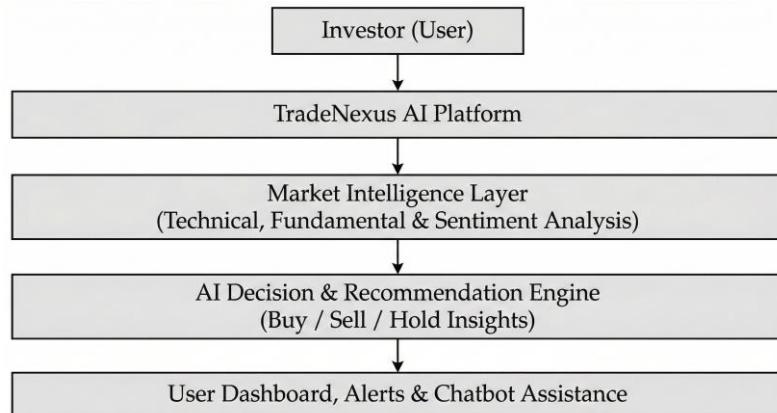


Fig. 1 High-Level Overview of TradeNexus AI

This figure presents a conceptual overview of TradeNexus AI, illustrating how user inputs are processed through integrated market analysis modules and AI-driven decision logic to generate actionable investment insights.

The proposed system processes real-time and historical market data through dedicated analytical modules. Technical analysis evaluates price trends and momentum using standard indicators, while fundamental analysis assesses the financial health and valuation of assets based on key financial ratios and company metrics. In parallel, sentiment analysis leverages natural language processing techniques to interpret financial news and market narratives. Outputs from these

independent modules are combined using a Weighted Fusion Decision Engine, which applies consensus-based logic to synthesize diverse signals into a single, interpretable decision outcome.

To enhance usability and transparency, TradeNexus AI provides an interactive user interface that includes analytical dashboards, portfolio management features, and an AI-powered conversational assistant. The platform is supported by a secure backend architecture and a PostgreSQL-based data storage layer for managing user credentials, session information, and portfolio holdings. By combining analytical intelligence with explainable insights and user-centric design, the proposed system delivers a scalable and accessible decision-support solution tailored to the needs of retail investors operating in dynamic financial markets.

V. SYSTEM REQUIREMENTS

To ensure smooth development, deployment, and execution of the proposed TradeNexus AI platform, both hardware and software requirements must be adequately satisfied. From a hardware perspective, the system should be equipped with a minimum of an Intel Core i5 processor or equivalent, operating at a clock speed of 1.6 GHz or higher, to support backend processing and AI inference tasks. A minimum of 8 GB RAM is recommended to efficiently handle concurrent operations such as data processing, machine learning workloads, and web server execution. Additionally, at least 512 GB of available storage space is required to accommodate the operating system, development tools, application files, datasets, and database storage.

From a software perspective, the system should operate on a modern operating system such as Windows 10 or later to ensure compatibility with development frameworks and libraries. The application is developed using a web-based technology stack, with the frontend implemented using modern JavaScript frameworks for interactive user interfaces and dashboards. The backend processing layer is developed using Python-based frameworks to handle API services, analytical workflows, and AI-driven decision logic. PostgreSQL is used as the relational database management system for securely storing user credentials, portfolio holdings, and session information. External financial data and news sentiment inputs are accessed through API-based integrations. This software configuration provides a stable, secure, and scalable environment for implementing the TradeNexus AI decision support platform.

VI. SYSTEM ARCHITECTURE

The system architecture of TradeNexus AI is designed using a modular and layered approach to support scalability, security, and efficient analytical processing. The architecture clearly separates user interaction, backend processing, artificial intelligence modules, external data sources, and persistent storage to ensure maintainability and extensibility. This structured design enables seamless integration of diverse financial data streams while supporting real-time analysis and secure user interaction within a unified decision-support framework.

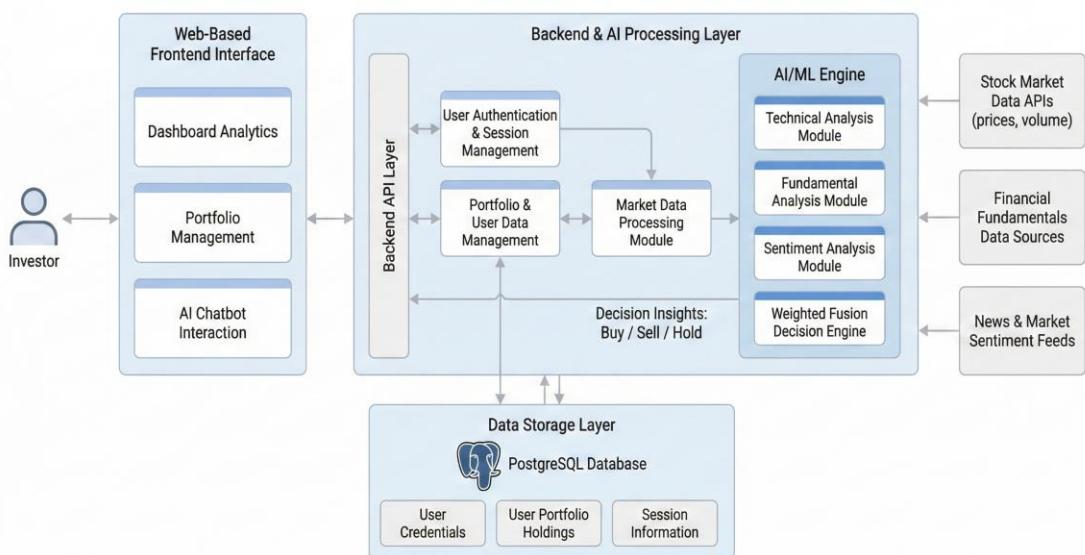


Fig. 2 System Architecture of TradeNexus AI

This diagram illustrates the architectural components of TradeNexus AI, highlighting interactions between the frontend interface, backend processing modules, AI/ML engine, external financial data sources, and the PostgreSQL database used for user and portfolio management.

The frontend layer serves as the primary interface for investor interaction and is implemented as a web-based platform that provides access to dashboard analytics, portfolio management features, and an AI-driven conversational assistant. This layer is responsible for presenting analytical insights, visualizing market trends, and enabling user-driven queries in an intuitive manner. It communicates with the backend exclusively through secure API calls, ensuring that sensitive processing logic and data management remain isolated from the client side.

The backend and AI processing layer forms the core of the system, managing authentication, business logic, and analytical workflows. User authentication and session management modules ensure secure access control, while portfolio and user data management modules handle investor-specific information and preferences. A dedicated market data processing module aggregates and preprocesses real-time and historical financial data received from external sources before forwarding it to the analytical components.

At the heart of the backend lies the AI and machine learning engine, which consists of independent analytical modules for technical analysis, fundamental analysis, and sentiment analysis. The technical analysis module evaluates price trends and momentum using standard indicators derived from market data APIs. The fundamental analysis module processes financial metrics obtained from structured financial data sources to assess asset valuation and financial health. In parallel, the sentiment analysis module applies natural language processing techniques to news and market sentiment feeds to capture qualitative market influences.

Outputs generated by these analytical modules are combined within the Weighted Fusion Decision Engine, which applies predefined weights and consensus-based logic to synthesize heterogeneous signals into a single, interpretable decision outcome. This engine generates actionable Buy, Sell, or Hold insights, ensuring that no single analytical perspective dominates the decision-making process. The fusion-based approach enhances robustness and reduces noise arising from isolated indicators.

The data storage layer is implemented using a PostgreSQL database and is dedicated to managing persistent system data, including user credentials, session information, and portfolio holdings. This layer supports secure data storage and retrieval while maintaining data integrity and consistency across system operations. By restricting database usage to user and portfolio-related information and excluding trading execution data, the architecture reinforces the system's focus on decision support rather than automated trading execution.

VII. FUNCTIONAL DESIGN AND USE CASE ANALYSIS

The functional design of TradeNexus AI defines the interactions between system users and the core functionalities provided by the platform. The system follows a role-based access model with two primary actors: the Investor and the System Administrator. Each actor interacts with the system through a well-defined set of use cases that collectively support intelligent market analysis, portfolio management, and controlled system maintenance. This functional separation ensures usability for investors while preserving internal system integrity and administrative control.

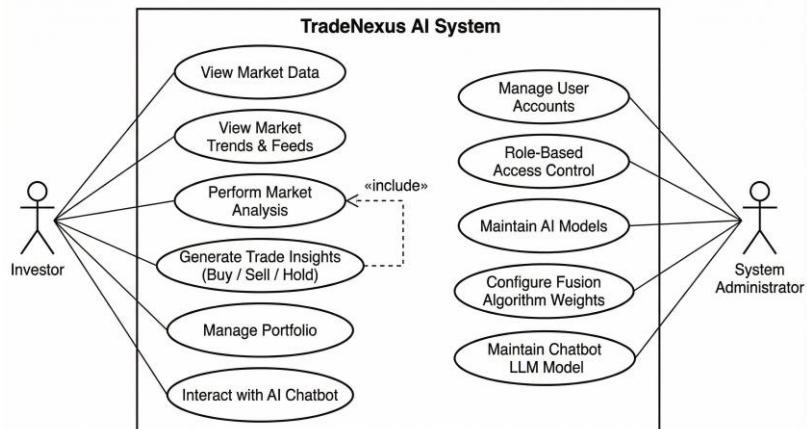


Fig. 3 UML Use Case Diagram of TradeNexus AI

This use case diagram illustrates the functional interactions between investors and system administrators within the TradeNexus AI platform, highlighting insight generation, portfolio management, and administrative model maintenance operations.

The Investor represents the primary end user of the TradeNexus AI platform. Investors can view real-time and historical market data, access market trends and news feeds, and perform market analysis using integrated technical, fundamental, and sentiment-based evaluation mechanisms. Based on this analysis, the system generates structured trade insights categorized as Buy, Sell, or Hold. These insights are decision-support outputs and do not trigger automated trade execution. Investors can also manage their investment portfolios by adding, modifying, or removing holdings, enabling continuous monitoring of asset performance. In addition, the platform provides an AI-powered chatbot interface that allows investors to interact with the system, seek explanations for generated insights, and query market-related information in a conversational manner.

The System Administrator is responsible for maintaining the internal functionality and reliability of the platform. Administrative use cases include managing user accounts, enforcing role-based access control, and ensuring secure authentication mechanisms. The administrator oversees the maintenance of AI models used for analysis and decision support, ensuring that analytical components remain accurate and up to date. Additionally, the administrator can configure parameters related to the fusion algorithm, allowing controlled adjustment of how analytical signals are weighted during insight generation. Maintenance of the chatbot language model is also handled at the administrative level to ensure consistent and relevant user interactions.

The use case relationship between “Perform Market Analysis” and “Generate Trade Insights” reflects the logical dependency within the system, where insight generation is achieved through the inclusion of analytical processes. This design highlights that insights are derived outcomes rather than standalone actions. By clearly defining actor responsibilities and system boundaries, the use case model emphasizes security, clarity, and controlled access to internal operations.

Overall, the functional design and use case analysis demonstrate that TradeNexus AI is structured as a decision-support platform centered on insight generation rather than automated trading execution. The UML use case model provides a clear and intuitive representation of system behavior, supporting scalability, maintainability, and transparent interaction between users and analytical components.

VIII. AI AND ANALYSIS METHODOLOGY

The AI and analysis methodology of TradeNexus AI is designed to generate structured and explainable investment insights by systematically integrating multiple dimensions of market intelligence. Rather than relying on a single analytical approach, the system follows a sequential and modular workflow that combines technical indicators, fundamental financial evaluation, and market sentiment analysis. This methodology ensures that generated insights are data-driven, balanced, and suitable for decision support without engaging in automated trade execution.

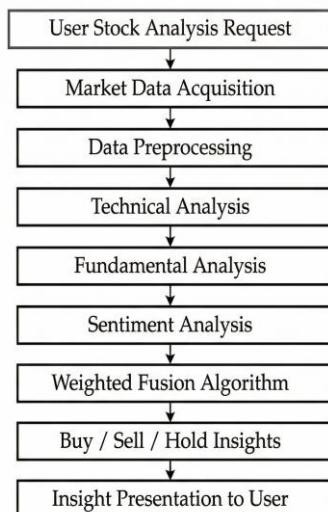


Fig. 4 AI-Driven Trade Insight Generation Workflow

This figure illustrates the sequential processing stages involved in generating investment insights in TradeNexus AI, integrating technical, fundamental, and sentiment analyses through a weighted fusion mechanism to produce buy, sell, or hold recommendations.

The first stage of the methodology involves market data acquisition and preprocessing. Real-time and historical price data are retrieved from financial data APIs, while financial fundamentals are sourced from structured financial information providers. News articles and market-related textual content are collected for sentiment evaluation. The acquired data undergo preprocessing steps such as normalization, formatting, and validation to ensure consistency and reliability before being passed to the analytical modules.

In the technical analysis stage, the system computes widely used market indicators to assess price trends, momentum, and potential reversal points. Indicators such as Relative Strength Index, Moving Average Convergence Divergence, and Simple Moving Averages are used to capture short-term and medium-term market behavior. This stage focuses on identifying trend strength and market momentum rather than predicting future prices, aligning with the decision-support objective of the platform.

The fundamental analysis stage evaluates the financial health and valuation of assets using key financial metrics and ratios. This includes assessment of earnings performance, valuation indicators, and financial stability measures. Fundamental analysis provides a longer-term perspective on asset quality, complementing the short-term signals derived from technical indicators. By incorporating both perspectives, the system avoids over-reliance on price-based signals alone.

Parallel to technical and fundamental evaluation, the sentiment analysis stage applies natural language processing techniques to financial news and market narratives. Textual data are analyzed to determine prevailing market sentiment, capturing qualitative factors such as investor confidence, macroeconomic outlook, and company-specific news impact. This stage enables the system to account for market psychology and external influences that may not be immediately reflected in numerical data.

The final stage of the methodology is the Weighted Fusion Decision Engine, which synthesizes outputs from the technical, fundamental, and sentiment analysis modules. Each analytical signal is assigned a predefined weight, and a consensus-based fusion logic is applied to generate a unified decision outcome categorized as Buy, Sell, or Hold. This fusion-based approach enhances robustness by ensuring that no single analytical dimension dominates the final insight. The resulting recommendations are presented to users as explainable decision-support outputs, reinforcing transparency and trust in the system.

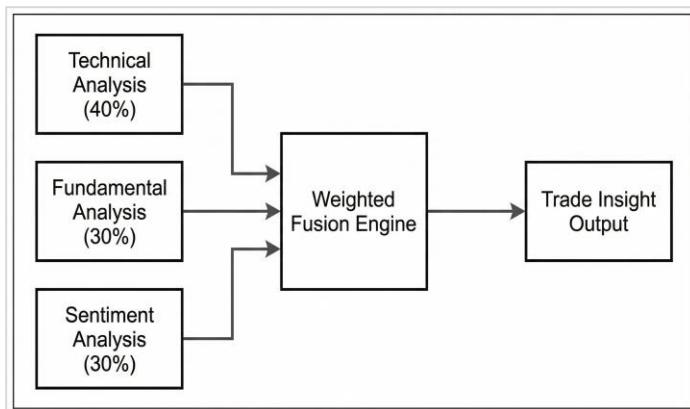


Fig. 5 Weighted Fusion Algorithm for Trade Insight Generation

This figure illustrates the weighted fusion decision mechanism employed by TradeNexus AI, where technical, fundamental, and sentiment analyses are combined using majority consensus logic to generate reliable investment insights.

IX. RESULTS AND DISCUSSION

The implementation of TradeNexus AI demonstrates the practical feasibility of integrating technical, fundamental, and sentiment-based analyses into a unified decision-support platform for retail investors. The system successfully processes

real-time and historical market data, evaluates multiple analytical dimensions, and generates structured Buy, Sell, or Hold insights in response to user queries. The results indicate that the modular analytical design and weighted fusion methodology enable consistent and interpretable insight generation without relying on automated trade execution.

From an analytical perspective, the separation of technical, fundamental, and sentiment analysis modules allows each component to operate independently while contributing meaningfully to the final decision outcome. Technical indicators effectively capture short-term market momentum and trend behavior, while fundamental analysis provides contextual evaluation of asset valuation and financial stability. Sentiment analysis complements numerical data by incorporating qualitative market information derived from financial news and narratives. The fusion of these heterogeneous signals results in insights that reflect a more balanced market perspective compared to single-indicator or single-model approaches.

The Weighted Fusion Decision Engine plays a central role in improving the reliability of generated insights. By assigning predefined weights to analytical outputs and applying consensus-based logic, the system reduces the influence of noise and isolated signal fluctuations. This approach helps mitigate the limitations associated with relying solely on price-based indicators or sentiment-driven signals. The generated Buy, Sell, or Hold recommendations are therefore structured as decision-support cues rather than deterministic predictions, reinforcing transparency and user trust.

From a usability standpoint, the web-based interface, portfolio management features, and AI-powered chatbot enhance user interaction and interpretability. Investors are able to visualize market trends, monitor portfolio performance, and query the system for explanations related to generated insights. The conversational interface, in particular, supports clarification of analytical outcomes, enabling users to better understand the rationale behind system-generated recommendations. This focus on explainability addresses a common limitation observed in many AI-driven trading systems.

In comparison with traditional retail trading platforms that provide fragmented analytical tools, TradeNexus AI offers a unified framework that consolidates multiple sources of market intelligence. While existing systems often require manual correlation of indicators and external information, the proposed platform automates analytical integration and presents outcomes in an organized and accessible manner. This integration reduces cognitive load and supports more structured decision-making, especially during periods of market volatility.

Overall, the results indicate that TradeNexus AI effectively fulfills its objective as an AI-driven decision-support system rather than an automated trading engine. The platform demonstrates how intelligent data fusion, modular analysis, and user-centric design can enhance market understanding for individual investors. These observations validate the proposed methodology and highlight the system's potential as a scalable and interpretable solution for AI-assisted financial decision making.

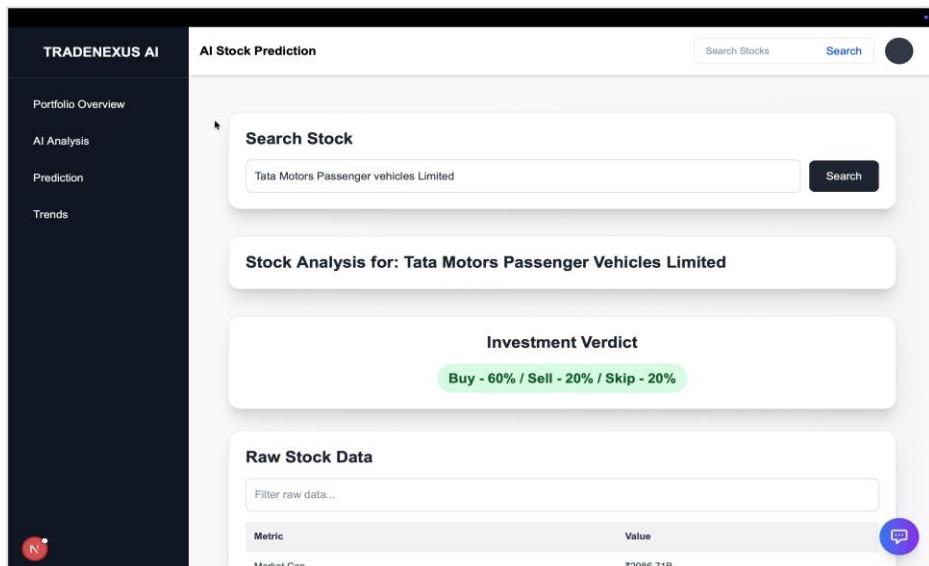


Fig. 6 Sample Trade Insight Output Generated by TradeNexus AI

This figure illustrates a representative system-generated investment insight produced by TradeNexus AI for a selected stock, demonstrating the presentation of Buy, Sell, and Hold confidence levels derived from integrated analytical modules. The output is intended for decision support and interpretability rather than automated trading execution.

X. CONCLUSION

This research presented TradeNexus AI, an AI-driven decision support platform designed to assist individual investors in navigating the complexity of modern financial markets. By integrating technical analysis, fundamental evaluation, and sentiment analysis within a unified framework, the system addresses key limitations of traditional retail trading platforms, including fragmented analysis, limited interpretability, and reliance on isolated indicators. The proposed architecture and methodology emphasize informed decision-making rather than automated trade execution, ensuring transparency and user trust.

The core contribution of TradeNexus AI lies in its weighted fusion-based approach to insight generation. By synthesizing heterogeneous analytical signals through a structured fusion mechanism, the system produces interpretable Buy, Sell, or Hold insights that reflect a balanced assessment of market conditions. The modular design of analytical components, combined with a secure backend and intuitive frontend interface, demonstrates the practical feasibility of deploying AI-assisted financial decision-support systems in real-world settings. Features such as portfolio management and conversational interaction further enhance usability and explainability.

Overall, the results and observations indicate that TradeNexus AI effectively fulfills its objective as a scalable, user-centric decision support platform for financial analysis. The system illustrates how artificial intelligence and machine learning can be responsibly applied to augment investor understanding without introducing opaque automation or unverified performance claims. This work contributes to the growing body of research on AI-assisted financial systems and provides a foundation for future enhancements aimed at improving analytical depth, adaptability, and user engagement within evolving financial environments.

XI. FUTURE ENHANCEMENTS

While TradeNexus AI demonstrates the effectiveness of an integrated, AI-driven decision support framework for financial analysis, several enhancements can be explored to further strengthen the system's analytical depth, adaptability, and user experience. One potential enhancement involves the incorporation of advanced machine learning models capable of dynamically adjusting analytical parameters based on evolving market conditions. This could improve the system's responsiveness to changing trends while preserving its decision-support focus.

Future work may also extend the sentiment analysis component by integrating deeper natural language understanding techniques to capture contextual and event-driven market signals more effectively. Enhancing the ability to interpret complex financial narratives, earnings reports, and macroeconomic announcements could further enrich the qualitative dimension of market analysis. Such improvements would enable more nuanced insight generation without compromising transparency or interpretability.

Another area for enhancement lies in expanding portfolio-level intelligence. Future versions of the system could incorporate portfolio risk assessment and diversification analysis to assist investors in evaluating overall exposure rather than focusing solely on individual assets. This would support more holistic investment decision-making while remaining consistent with the platform's non-executive, advisory role.

Scalability and personalization also present opportunities for future development. Introducing adaptive user preference modeling could allow the system to tailor analytical emphasis based on individual investment horizons or risk tolerance. Additionally, extending support to a broader range of asset classes and markets could increase the applicability of the platform while maintaining its modular architectural design.

Overall, these enhancements aim to build upon the existing foundation of TradeNexus AI by improving analytical sophistication, interpretability, and user engagement. Future research and development in these directions can further contribute to the advancement of AI-assisted financial decision-support systems in increasingly complex market environments.

REFERENCES

- [1]. P. Kumbhare, S. Dani, L. Kolhe, P. Fandade, and D. Theng, "Algorithmic Trading Strategy Using Technical Indicators," Proc. 2023 11th Int. Conf. on Emerging Trends in Engineering & Technology – Signal and Information Processing (ICETET-SIP), IEEE, pp. 1–6, 2023.

- [2]. S. Agal and N. D. Odedra, "Impact of Predictive Analytics on Algorithmic Trading: Enhancing Strategy Performance and Profitability," *Degres Journal*, vol. 10, no. 2, pp. 184–194, 2025.
- [3]. F. Dakalbab, M. A. Talib, Q. Nasir, and T. Saroufil, "Artificial Intelligence Techniques in Financial Trading: A Systematic Literature Review," *Journal of King Saud University – Computer and Information Sciences*, vol. 36, no. 4, pp. 1–15, 2024.
- [4]. S. V. S. P. P. Jaya Sankar Krishna, A. Panda, and P. Sindhuja, "Algorithmic Strategies in High Frequency Trading: A Comprehensive Review," *International Journal of Research Publication and Reviews*, vol. 4, no. 11, pp. 2460–2467, 2023.
- [5]. L. Kumar, K. Singh, and P. Kumar, "Algorithmic Trading and its Impact on Finance Sector and Markets: A Case Study of AI-driven Strategies," *International Journal of Research Publication and Reviews*, vol. 5, no. 6, pp. 6176–6183, 2024.
- [6]. C. C. Muralidhar, B. Vikas, and M. S. Narayan, "The Effect of Algorithmic Trading Systems on Stock Market Volatility," *Proc. Int. Conf. on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE)*, IEEE, 2025,