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Abstract: The state of charge (SOC) of a battery is a key parameter for the safe and efficient operation of electric 

vehicles (EVs), as it directly affects driving range estimation, energy management, and battery protection. Accurate 

SOC estimation is challenging due to the nonlinear behavior of batteries, variations in operating conditions, 

temperature effects, and aging phenomena. This paper presents a comprehensive review of SOC monitoring and 

estimation techniques for electric vehicle applications. First, the fundamental concepts of battery SOC, key battery 

characteristics, and the role of SOC in battery management systems are discussed. Subsequently, a detailed review of 

conventional, model-based, and data-driven SOC estimation methods is provided, highlighting their underlying 

principles and practical applications. The performance of existing approaches is then compared in terms of estimation 

accuracy, robustness, computational complexity, and suitability under real-world driving and charging conditions. Key 

challenges and limitations associated with current SOC estimation techniques are identified. Finally, emerging research 

trends and future directions toward intelligent, adaptive, and real-time SOC estimation frameworks are outlined, 

followed by concluding remarks on the development of reliable SOC estimation strategies for next-generation electric 

vehicles. 
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I. INTRODUCTION 

 
The rapid growth of electric vehicles (EVs) has intensified the demand for reliable and efficient battery management 

systems to ensure safety, performance, and user confidence. Among various battery state parameters, the state of charge 

(SOC) plays a crucial role, as it represents the available capacity of a battery relative to its rated capacity. Accurate 

SOC information is essential for estimating driving range, optimizing energy management strategies, enabling safe 

charging and discharging, and preventing overcharging or deep discharging of the battery.Unlike conventional fuel 

gauges, SOC cannot be measured directly and must be estimated using battery terminal measurements such as voltage, 

current, and temperature. However, the electrochemical behavior of lithium-ion batteries is highly nonlinear and 

influenced by several factors, including operating conditions, temperature variations, load dynamics, and battery aging. 

These complexities make SOC estimation a challenging task, particularly under real-world driving scenarios where 

current profiles are highly dynamic and unpredictable. 

 

Accurate SOC estimation is critical not only for vehicle-level functions but also for advanced applications such as fast 

charging, regenerative braking, energy optimization, and vehicle-to-grid interactions. Inaccurate SOC estimates may 

lead to range anxiety, reduced battery lifespan, safety risks, and inefficient utilization of energy resources. 

Consequently, improving the accuracy and robustness of SOC estimation techniques has become a major research 

focus in the development of next-generation EV battery management systems.Over the past decades, a wide range of 

SOC monitoring and estimation methods have been proposed, ranging from conventional techniques such as Coulomb 

counting and open-circuit voltage–based approaches to advanced model-based and data-driven methods. Recently, 

artificial intelligence and machine learning techniques have gained significant attention due to their ability to capture 

complex nonlinear relationships and adapt to varying operating conditions. Despite these advancements, no single SOC 

estimation method can universally satisfy the requirements of accuracy, robustness, computational efficiency, and real-

time applicability. 

 

In this context, this paper presents a comprehensive review of SOC monitoring and estimation techniques for electric 

vehicle applications. The review aims to summarize the fundamental concepts of battery SOC, systematically classify 

existing estimation methods, and critically analyze their performance and limitations. Furthermore, current challenges 

and emerging research directions are discussed to provide insights into the development of intelligent, adaptive, and 

reliable SOC estimation frameworks for future electric vehicles. 
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II. BACKGROUND AND FUNDAMENTALS OF BATTERY STATE OF CHARGE 

 
A. Definition of State of Charge 

The state of charge (SOC) is a key indicator used to describe the available energy in a battery relative to its nominal or 

rated capacity. It is typically expressed as a percentage, where 100% SOC represents a fully charged battery and 0% 

SOC corresponds to a fully discharged state. Mathematically, SOC can be defined as the ratio of the remaining charge 

to the maximum charge capacity of the battery. Since direct measurement of stored charge is not feasible, SOC must be 

estimated using measurable battery parameters such as terminal voltage, current, and temperature. 

 

B. Battery Characteristics Relevant to SOC Estimation 

Lithium-ion batteries, which are widely used in electric vehicles, exhibit complex electrochemical behavior that 

significantly influences SOC estimation. Key battery characteristics include nonlinear voltage–SOC relationships, rate-

dependent capacity, hysteresis effects, internal resistance variation, and thermal sensitivity. Additionally, battery 

capacity degrades over time due to aging mechanisms such as solid electrolyte interface formation and lithium plating, 

leading to changes in internal parameters. These characteristics vary with operating conditions and battery chemistry, 

making accurate SOC estimation challenging under real-world driving scenarios. 

 

Table No: 1 Background and Fundamentals of Battery State of Charge (SOC) 

 

Aspect Description Relevance to SOC Estimation 

Definition of SOC 

SOC represents the ratio of remaining battery 

capacity to its nominal capacity, usually expressed 

as a percentage. 

Forms the basis for energy 

availability, range prediction, and 

battery protection. 

Battery Characteristics 

Includes nonlinear voltage–SOC relationship, 

internal resistance variation, hysteresis, 

temperature sensitivity, and aging effects in 

lithium-ion batteries. 

Strongly influences SOC 

estimation accuracy and model 

selection. 

Temperature Effects 

Battery performance and parameters vary with 

temperature, affecting voltage response and 

capacity. 

Causes estimation errors if not 

compensated in SOC algorithms. 

Battery Aging 
Capacity fades and increases in internal resistance 

over time due to electrochemical degradation. 

Leads to parameter mismatch and 

long-term SOC drift. 

Measurement 

Uncertainties 

Sensor noise and errors in current, voltage, and 

temperature measurements. 

Accumulates errors, especially in 

integration-based methods. 

Dynamic Load 

Conditions 

Rapid current changes due to acceleration, 

regenerative braking, and fast charging. 

Challenges real-time SOC 

estimation under practical EV 

operation. 

Role in BMS 

SOC is a core input for battery management 

functions such as charge control, thermal 

management, and cell balancing. 

Enables safe operation, efficient 

energy use, and extended battery 

life. 

Application Impact 
Influences driving range estimation, fast charging 

strategies, and vehicle-to-grid operations. 

Critical for user confidence and 

system-level optimization. 

 

C. Factors Affecting SOC Estimation Accuracy 

Several factors impact the accuracy and reliability of SOC estimation methods. Measurement errors in current, voltage, 

and temperature sensors can lead to cumulative estimation errors, particularly in integration-based methods. 

Temperature variations affect internal resistance and battery dynamics, while aging alters capacity and model 
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parameters over time. Dynamic load conditions, regenerative braking, and fast charging further complicate SOC 

estimation due to rapidly changing current profiles. Model uncertainties and parameter mismatches also contribute to 

estimation inaccuracies, emphasizing the need for adaptive and robust estimation techniques. 

 

D. Role of SOC in Battery Management Systems 

SOC estimation is a fundamental function of the battery management system (BMS) in electric vehicles. Accurate SOC 

information enables reliable driving range prediction, safe charging and discharging control, and effective energy 

management strategies. It also supports advanced BMS functions such as cell balancing, thermal management, fault 

diagnosis, and protection against overcharge and deep discharge. Furthermore, SOC plays a critical role in emerging 

applications such as fast charging, regenerative energy recovery, and vehicle-to-grid operations. Therefore, improving 

SOC estimation accuracy and robustness is essential for enhancing battery safety, performance, and lifespan in electric 

vehicle systems. 

 

III. SOC MONITORING AND ESTIMATION TECHNIQUES 

 
SOC estimation techniques for electric vehicle batteries can be broadly classified into conventional methods, model-

based approaches, and data-driven techniques. Each category differs in terms of estimation accuracy, computational 

complexity, robustness, and suitability for real-time implementation in battery management systems as shown in figure 

1. 

A. Conventional SOC Estimation Methods 

Conventional SOC estimation methods are widely used due to their simplicity and ease of implementation. One of the 

most common techniques is Coulomb counting, which estimates SOC by integrating the battery current over time. 

While this method is straightforward and computationally efficient, it is highly sensitive to current measurement errors 

and initial SOC uncertainty, leading to error accumulation over long-term operation.Another widely used approach is 

the open-circuit voltage (OCV) method, which estimates SOC based on the relationship between battery OCV and 

SOC. This method provides good accuracy under equilibrium conditions; however, it requires the battery to remain at 

rest for a sufficient period, making it unsuitable for real-time EV operation. Hybrid approaches combining Coulomb 

counting and OCV correction are often employed to improve estimation accuracy in practical applications. 

 
Figure no 1: SOC estimation techniques overview 

 

B. Model-Based SOC Estimation Techniques 

Model-based SOC estimation methods utilize mathematical battery models to represent the dynamic behavior of the 

battery. Equivalent circuit models, such as the Rint model and Thevenin-based models, are commonly adopted due to 

their balance between accuracy and computational efficiency. These models are often combined with estimation 

algorithms such as Kalman filters, extended Kalman filters (EKF), unscented Kalman filters (UKF), and particle filters 

to estimate SOC in real time. 
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Electrochemical models provide a more detailed representation of battery internal processes and offer higher estimation 

accuracy. However, their high computational complexity and parameter identification requirements limit their real-time 

applicability in EV battery management systems. Model-based approaches generally offer improved robustness and 

adaptability compared to conventional methods but require accurate model parameterization and continuous updating to 

account for battery aging and temperature effects. 

 

C. Data-Driven and Artificial Intelligence–Based Methods 

Data-driven SOC estimation techniques have gained significant attention in recent years due to advances in machine 

learning and computational intelligence. These methods rely on historical and real-time battery data to learn the 

nonlinear relationship between input variables such as voltage, current, and temperature, and the corresponding SOC. 

Commonly used techniques include artificial neural networks, support vector machines, fuzzy logic systems, and deep 

learning models. Machine learning–based approaches can achieve high estimation accuracy under complex and 

dynamic operating conditions without requiring explicit battery models. However, their performance strongly depends 

on the quality and diversity of training data, and they may suffer from poor generalization when operating conditions 

deviate from the training dataset. Hybrid methods that combine model-based and data-driven techniques are 

increasingly explored to leverage the strengths of both approaches while mitigating their individual limitations as 

shown in figure 2. 

 

IV. CHALLENGES, PERFORMANCE COMPARISON, AND EVALUATION METRICS 

 
Accurate and reliable SOC estimation remains a challenging task due to the complex and nonlinear behavior of lithium-

ion batteries and the demanding operating conditions of electric vehicles. This section discusses the major challenges 

associated with SOC estimation, compares the performance of existing approaches, and outlines commonly used 

evaluation metrics. 

 

A. Key Challenges in SOC Estimation 

One of the primary challenges in SOC estimation is the nonlinear and time-varying nature of battery characteristics. 

Factors such as temperature fluctuations, battery aging, and varying charge–discharge rates significantly affect battery 

dynamics and degrade estimation accuracy. Sensor noise and measurement errors in current, voltage, and temperature 

further introduce uncertainty, particularly in long-term operation.Real-world driving conditions present highly dynamic 

current profiles due to frequent acceleration, regenerative braking, and fast charging, which pose difficulties for both 

conventional and model-based estimation methods. Additionally, battery aging leads to capacity fade and internal 

resistance changes, causing parameter mismatch in model-based approaches and reducing the effectiveness of fixed-

parameter estimators. 

 

B. Performance Comparison of SOC Estimation Methods 

Conventional methods, such as Coulomb counting and OCV-based techniques, are computationally efficient and easy 

to implement but suffer from limited robustness and long-term accuracy. Coulomb counting is prone to drift over time, 

while OCV-based methods are unsuitable for real-time operation due to relaxation requirements.Model-based methods 

generally offer improved accuracy and robustness under dynamic conditions by incorporating battery dynamics into the 

estimation process. Kalman filter–based approaches can effectively handle measurement noise and system uncertainty; 

however, their performance depends heavily on accurate battery models and parameter tuning. Electrochemical model–

based methods provide high accuracy but are computationally intensive, limiting their practical use in real-time battery 

management systems. 

 

Data-driven and artificial intelligence–based methods demonstrate strong capability in capturing nonlinear relationships 

and adapting to complex operating conditions. These approaches often outperform traditional methods in terms of 

estimation accuracy; however, they require large, high-quality datasets and significant computational resources. Their 

generalization ability under unseen operating conditions and aging effects remains a key concern. 

 

C. Evaluation Metrics for SOC Estimation 

The performance of SOC estimation techniques is commonly evaluated using quantitative metrics such as root mean 

square error (RMSE), mean absolute error (MAE), and maximum estimation error. Robustness is assessed by 

examining performance under varying temperatures, aging conditions, and dynamic load profiles. Computational 

complexity and memory requirements are critical metrics for real-time implementation in embedded battery 

management systems. 
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Additional evaluation criteria include convergence speed, stability, sensitivity to initial SOC errors, and adaptability to 

battery degradation. Comprehensive performance assessment under realistic driving and charging scenarios is essential 

to determine the suitability of SOC estimation methods for practical electric vehicle applications. 

 

 
Figure no 2: Challenges, Performance Comparison, and Evaluation Metrics 

 

D. Limitations of Existing Approaches 

Despite significant advancements, no single SOC estimation method can simultaneously achieve high accuracy, 

robustness, low computational complexity, and adaptability under all operating conditions. Conventional methods lack 

long-term reliability, model-based approaches suffer from parameter dependency, and data-driven techniques face 

challenges related to data availability and interpretability. These limitations highlight the need for hybrid and adaptive 

SOC estimation frameworks that can balance performance and practicality. 

 

V. FUTURE RESEARCH DIRECTIONS 

 
Despite significant progress in SOC monitoring and estimation techniques, several open research challenges remain 

that warrant further investigation. One important research direction is the development of adaptive and self-learning 

SOC estimation algorithms that can automatically update model parameters to account for battery aging, temperature 

variations, and changing operating conditions. Such approaches are essential for maintaining long-term estimation 

accuracy throughout the battery lifespan.The integration of artificial intelligence with physics-based battery models 

represents another promising trend. Hybrid methods that combine model-based estimators with machine learning 

techniques can exploit both physical interpretability and data-driven adaptability. These methods have the potential to 

improve robustness under dynamic driving conditions while reducing reliance on extensive training datasets. 

 

Advanced sensing and data acquisition technologies, including high-precision sensors and cloud-based monitoring 

platforms, are expected to enhance SOC estimation accuracy. In addition, the use of digital twin technology for 

batteries may enable real-time monitoring, predictive analysis, and fault diagnosis, thereby supporting more intelligent 

battery management strategies.Future research should also focus on reducing computational complexity and improving 

real-time feasibility for embedded battery management systems. Lightweight algorithms capable of operating 

efficiently on resource-constrained hardware are critical for large-scale EV deployment. Furthermore, standardized 

evaluation frameworks and benchmark datasets are needed to enable fair comparison and validation of SOC estimation 

methods under realistic driving and charging scenarios. 

 

VI.  CONCLUSION 

 

This paper presented a comprehensive review of state of charge monitoring and estimation techniques for electric 

vehicle applications. The fundamental concepts of battery SOC, key influencing factors, and the role of SOC in battery 

management systems were discussed. Conventional, model-based, and data-driven SOC estimation methods were 

systematically reviewed and compared in terms of accuracy, robustness, computational complexity, and practical 

applicability. Although significant advancements have been achieved, existing SOC estimation approaches continue to 
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face challenges related to nonlinear battery behavior, aging effects, sensor uncertainties, and real-world operating 

conditions. No single method can fully satisfy all performance requirements, highlighting the need for hybrid, adaptive, 

and intelligent SOC estimation frameworks. Continued research in this area will play a crucial role in improving battery 

safety, extending battery lifespan, and enhancing the overall reliability and efficiency of future electric vehicles. 

 

REFERENCES 

 
[1]. O. Demirci, S. Taskin, E. Schaltz, and B. A. Demirci, “Review of battery state estimation methods for electric 

vehicles—Part I: SOC estimation,” Journal of Energy Storage, vol. 87, 2024.  

[2]. N. Rietmannet al., “A comprehensive review of state of charge estimation in lithium-ion batteries used in 

electric vehicles,” Journal of Energy Storage, vol. 72, 2023.  

[3]. X. Yun, X. Zhang, C. Wang, and X. Fan, “A review on state of charge estimation methods for lithium-ion 

batteries based on data-driven and model fusion,” Journal of Energy Storage, vol. 129, 2025.  

[4]. “State of charge estimation of lithium-ion battery for electric vehicle using cutting edge machine learning 

algorithms: A review,” Journal of Energy Storage, vol. 103, 2024.  

[5]. “Review on state of charge estimation techniques of lithium-ion batteries: A control-oriented approach,” Journal 

of Energy Storage, vol. 72, 2023.  

[6]. J. Yu, “A method of state-of-charge estimation for EV power lithium-ion battery using a novel adaptive 

extended Kalman filter,” IEEE Transactions on Vehicular Technology, 2020. 

[7]. H. Dai, “Improved parameter identification and state-of-charge estimation for lithium-ion battery with fixed 

memory recursive least squares and sigma-point Kalman filter,” ElectrochimicaActa, 2021. 

[8]. Z. Zhang et al., “State-of-charge estimation of lithium-ion batteries with AEKF and wavelet transform matrix,” 

IEEE Transactions on Power Electronics, 2016. 

[9]. S. Hannan, M. Lipu, A. Hussain, and A. Mohamed, “State-of-charge and state-of-health estimation for 

lithium-ion batteries based on dual fractional-order extended Kalman filter,” IEEE Access, 2021. 

[10]. Y. Lipuet al., “State of charge estimation of lithium-ion battery using recurrent NARX neural network model,” 

IEEE Access, 2018. 

[11]. Y. Hu and Z. Wang, “Study on SOC estimation of lithium battery based on improved BP neural network,” Proc. 

IEEE ISNE, 2019. 

[12]. B. Bhattacharjee, “Estimating state of charge for xEV batteries using 1D convolutional neural networks and 

transfer learning,” IEEE Transactions on Vehicular Technology, 2021. 

[13]. “Data-driven state-of-charge estimation of a lithium-ion battery pack in electric vehicles based on real-world 

driving data,” Journal of Energy Storage, vol. 101, 2024.  

[14]. “Real-time state of charge estimation for electric vehicle power batteries using optimized filter,” Energy, vol. 

254, Part B, 2022. 

[15]. N. Rietmannet al., “Overview of batteries State of Charge estimation methods,” Transportation Research 

Procedia, vol. 40, 2019. 

[16]. “A review of lithium-ion battery state of charge estimation methods based on machine learning,” Energies, vol. 

15, no. 4, 2022. 

[17]. “A Review on State-of-Charge Estimation Methods, Energy Storage Technologies and State-of-the-Art 

Simulators: Recent Developments and Challenges,” World Electric Vehicle Journal, vol. 15, no. 9, 2024. 

[18]. “Characterization of Li-ion battery and state of charge estimation methods for diverse battery chemistries: a 

review,” Discover Applied Sciences, vol. 7, 2025.  

[19]. G. Hu, K. Liao, J. Ye, and F. Guo, “Adaptive dead-zone dual sliding mode observer for reliable electrochemical 

model-based SOC estimation,” arXiv, 2025. 

[20]. J. Wang, W. Yu, G. Cheng, and L. Chen, “Online SOC estimation of lithium-ion battery based on improved 

adaptive H-infinity extended Kalman filter,” arXiv, 2023. 

[21]. (Optional foundational) X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit models for Li-ion 

batteries,” Journal of Power Sources, vol. 198, pp. 359–367, 2012. 

[22]. (Optional) Y. Xing et al., “Battery management systems in electric and hybrid vehicles,” Energies, vol. 4, no. 

11, pp. 1840–1857, 2011. 

[23]. (Optional) M. Berecibaret al., “Critical review of state of health estimation methods of Li-ion batteries for real 

applications,” Renewable and Sustainable Energy Reviews, vol. 56, 2016. 

[24]. (Optional) S. Sepasi, R. Ghorbani, and B. Y. Liaw, “Improved extended Kalman filter for SOC estimation of 

battery packs,” Journal of Power Sources, vol. 255, pp. 368–376, 2014. 

[25]. (Optional) X. Chen et al., “Particle filter-based SOC and remaining dischargeable time prediction method,” 

Journal of Power Sources, vol. 307, 2024. 

https://iarjset.com/

