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Abstract: The rapid proliferation of Internet of Things (IoT) devices has intensified the demand for efficient spectrum 

utilization, making traditional static spectrum allocation insufficient. Cognitive Radio (CR) technology emerges as a 

promising solution by enabling dynamic spectrum access through intelligent spectrum sensing and adaptive decision-

making. This review paper presents a comprehensive analysis of intelligent spectrum sensing and data fusion techniques 

in Cognitive Radio–enabled IoT networks. It systematically examines conventional spectrum sensing approaches, 

including energy detection, matched filtering, and cyclostationary detection, highlighting their limitations in noisy, 

heterogeneous, and large-scale IoT environments. To address these challenges, the paper explores machine learning and 

deep learning–based spectrum sensing methods that enhance detection accuracy, robustness, and adaptability. 

Furthermore, the role of data fusion is critically reviewed, focusing on data-level, feature-level, and decision-level fusion 

strategies that improve sensing reliability by combining observations from multiple IoT nodes. Intelligent data fusion 

techniques based on neural networks, fuzzy logic, and reinforcement learning are also discussed, emphasizing their 

capability to reduce uncertainty and communication overhead. The integration of spectrum sensing and data fusion within 

edge and fog computing paradigms is analyzed to support real-time and energy-efficient IoT applications. Finally, the 

paper identifies open research challenges related to scalability, security, latency, and standardization, and outlines future 

research directions toward 6G-enabled cognitive IoT systems. This review aims to serve as a valuable reference for 

researchers and practitioners working on intelligent spectrum management in next-generation IoT networks  

 

Keywords: Cognitive Radio, Spectrum Sensing, Data Fusion, Internet of Things, Machine Learning, Cooperative 

Sensing, Dynamic Spectrum Access. 

 

I. INTRODUCTION 

 

The rise of the Internet of things (IoT) has changed the entire landscape of communication networks, having enabled 

billions of diverse objects to feel, process, and transmit information in real time. Several real-world scenarios, e.g., smart 

cities, industrial automation, health monitoring, intelligent transportation, and environment sensing, critically depend 

upon "continuous" and "reliable" wireless networking [1]. The big adopted wave of IoT technologies that have been 

proliferated across the globe has aggravated the need for radio spectrum and overcrowded traditionally leased areas. In 

this context, highlights of current spectrum measurements have shown how much of the spectrum has remained 

underutilized within the confines of time, space, and frequency. Such underutilization counteracts the general belief in 

spectrum scarcity and thus shows the downside of a rigid spectrum allocation policy, hence suggesting the way for much 

more creative and adaptive spectrum management approache [2]. 

 

In the Internet of Things (IoT), cognitive radio (CR) technology provides the potential promise for overcoming the 

constraints, allowing for dynamic spectrum access. Cognitive radio is an intelligent wireless system that can sense the 

radio environment around it, learn from observation, and adapt autonomously for its transmission parameters so as to 

utilize whatever available spectrum while curbing interference to its detriment to the licensed or primary users. Integration 

with IoT networks enables cognitive radio to provide efficient spectrum sharing, enhance spectral efficiency, and allow 

scalable connectivity to resource-constrained devices [3]. Various reasons underscore the relevance of cognitive radio in 

the IoT, such as scarcity in spectrum, diversity of quality of service (QoS) requirements among IoT applications, 

limitations in constraints for energy efficiency, and communication reliability for environments that are dynamic and 

heterogeneous. Cognitive-radio empowered IoT networks can effectively employ idle spectrum bands, thus 
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simultaneously alleviating congestion, enhancing throughput, and augmenting the number of devices, such a scenario 

forming the linchpin for next-generation wireless systems [4]. 

 

The most basic radio operation is based on spectrum sensing. To enable secondary IoT devices to observe the presence 

or absence of primary users' signals and locate spectrum opportunities. The efficiency of the use of that spectrum depends 

on the reliability with which spectrum sensing is performed while ensuring protection is extended to licensed users [5]. 

The most common methods for sensing include largely energy detection, matched filtering, and cyclostationarity 

detection, known for their major benefits: simplicity, and theoretical underpinning. These, however, do not work well in 

the environment characterized by low S/N ratio, severe fading and shadowing, hardware loin(ts, and unpredictable traffic 

[6]. The best fit in this case is the cooperative spectrum sensing method where multiple IoT nodes are employed to sense 

a given band so that observations may be collated to enable betterre/liability thresholds of detection. The performance of 

cooperative energy detection will be well enhanced whereas there may come in a matter of challenges regarding 

communication overhead, scalability, and decision accuracy [7]. 

 

Data fusion holds a prime importance for cooperative spectrum sensing, where information is fused across different nodes 

for more reliable global decisions. Depending on the level of abstraction, this fusion can take place in the data level, 

feature level, or decision level, each one plently of trade-offs between complexity, performance, and communication cost. 

Improved data fusion translates to improved detection performance, reduced false alarm rate, and robustness to channel 

distortions and malicious behaviors [8]. In cognitive radio enabled IoT networks, intelligent data fusion is equally of 

importance, given the fact of numerous distributed and resource-constrained devices [9]. Advanced fusion strategies, the 

likes of Bayesian theory, Dempster-Shafer, fuzzy logic, optimization techniques, handle uncertainty and heterogeneity 

of sensing reports. Recently, deliberations around machine learning and deep learning fusion methods were ongoing due 

to their capability to learn complex patterns, adapt to dynamic environments and enhance decision accuracy without strict 

statistical assumptions [7][10]. 

 

While considerable efforts have been made, a few challenges and avenues that need further research still exist in the 

intelligent spectrum sensing mechanisms and data fusion in the cognitive IoT network paradigm. Scalability in this 

respect is a serious issue since the centralised sensing and fusion methods that are standard nearly the world over seem 

inadequate to handle the huge numbers of IoT devices. According to another angle, energy efficiency is very pressing 

due to the rapid drainage of the battery resources of the IoT nodes through frequent sensing and reporting 10]. Besides 

this, noise uncertainty, mobility, hidden primary user, and correlated sensing data tend to degrade spectrum-sensing 

accuracy further. Security and privacy make spectrum access all the more reliable, with issues like false data injection 

and malice of sensing attacks. In sum, many of these studies rely on idealistic assumptions or rigorous simulation-based 

evaluations and hence their thirst for real-metal models, real data sets, and practices. Integration of edge and fog 

computing to decentralized intelligence, and their alignment with emerging 6G communication frameworks, all are still 

open research topics [11]. Fig.1 represents Block Diagram of Cognitive Radio. 

 

 
Fig. 1: Block Diagram of Cognitive Radio 
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In order to overcome these challenges, intelligent spectrum scan and data fusion mechanisms in cognitive radio-enabled 

IoT networks are extensively analyzed in an organized enumerative review paper is shown. The paper lays down a 

systematic lay review of the conventional spectrum sensing methods and machine learning-based spectrum sensing 

methods, discusses data fusion strategies strictly built across different layers of abstraction, and highly emphasizes, in 

brief, the modern intelligent and adaptive fusion methodology with its unique marksmanship [12]. Besides, the work 

identifies existing integration models that marry sensing and fusion with edge intelligence to improve scalability and 

real-time performance. Through the identification of the open challenges in the research field, the article is supposed to 

provide some showcasing for researchers, starting toward efficient and intelligent spectrum management in the modern 

IoT context [13]. 

 

I. Fundamentals of Cognitive Radio and IoT 

The convergence of Cognitive Radio (CR) and the Internet of Things (IoT) represents a transformative shift for addressing 

spectrum inefficiency and connectivity challenges in Commonwealth wireless communication ecosystems. The IoT 

network consists of excessive homogeneous and low-power devices, which anticipate reliable and scalable 

communication.  

 

Cognitive Radio: Principles 

Cognitive Radio is the intelligent wireless communication technology that adjusts the performance by sensing and 

learning from the surrounding radio ecological settings. Cognitive radio was first introduced by Mitola, who had 

developed the concept to enhance the spectrum efficiency by allowing the unlicensed or secondary users to opportunely 

get access to the underutilized licensed bandwidth without causing harmful interference to the primary users [14]. The 

core operations of cognitive radio lie in the cognitive cycle, which summarizes spectrum sensing, spectrum analysis, 

spectrum decision, spectrum mobility, and spectrum sharing. 

 

Internet of Things (IoT) Overvie 

 

The Internet of Things (IoT) is a concept in which there exists a network of interconnected physical entities that are 

empowered with sensors, actuators, processing units, and communication interfaces, to collect and exchange data over 

the Internet. IoT devices, thus, scope into smart homes, healthcare, industrial automation, agriculture, transportation, 

environmental monitoring, and other domains.[15] The computing capability, memory, and energy resources of these 

devices are mostly limited while setting forth computational requirements to manage voluminous data with 

communication reliability [16]. 

 

IoT Communication Challenges 

Challenges that immediately limit the performance and scalability of the network for IoT communication are the very 

issues ensuing through the mass connectivity of devices. Thousands of devices may attempt connectivity with the network 

simultaneously, causing congestion and a greater probability of collision [17]. Energy efficiency is a matter of much 

concern-other than these-devices being small and self-sustained by their own batteries. Given battery strength and 

expected operational durations in the long run without maintenance, any operation requiring recurring communication 

and sensing will-day by day and even more-obviously affect device lifetime [18]. Fig. 2 represents Cognitive radio (CR)-

Internet of Things (IoT) spectrum-heterogeneous environment 

 

 
Fig. 2: Cognitive radio (CR)-Internet of Things (IoT) spectrum-heterogeneous environment 
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Spectrum Scarcity and Underutilization 

With wireless services and IoT deployments marching on without stopping, spectrum scarcity has arisen as a serious 

problem. About any frequency band instead appears to be statically assigned to developed license holders, leading to 

congestion in popular bands (e.g., ISM). However, any periodic and geographical dimension will attest empirical studies 

that display underutilization, with multiple licensed spectrum bands. Rigidity in the regulatory structure prevents frequent 

spectrum assignment ultimately leading to ineffectiveness [19]. 

 

Cognitive Radio–Enabled IoT Architecture 

Over the conventional IoT communication paradigms, the implementation of Cognitive Radio-based technologies, in 

general, represents the idea of introducing spectrum-use awareness intelligence. These cognitive-radio-equipped IoT 

devices come endowed with spectrum-sensing modules and adaptive transceivers. They basically keep an eye on the 

radio environment to detect vacant spectrums and immediately adjust their transmission-related parameters [17]-[18]. 

Moreover their many IoT nodes are engaged in a cooperative and collaborative spectrum-sensing operation whereby the 

multiple sensor nodes share the crucial information needed for enhancing accuracy with regard to detection. 

 

Smart data fusion may involve central or distributed decision-making entities, such as fusion centers, edge servers, or fog 

nodes, aggregating sensor data. Edge computing is very crucial by significantly minimizing latency and communications 

overhead through local processing and real-time decision-making. The architecture employs learning mechanisms, such 

as machine learning models, to increase the response mechanism and allow for long-term optimization [19]. It is expected 

that the integrated framework may provide energy efficiency, scalability, and the reliability of communications, tailored 

well for future IoT systems and networks beyond 5G/6G. Fig. 3 represents Cognitive Radio Network Architecture. 

 

 
Fig. 3: Cognitive Radio Network Architecture 

 
II.     SPECTRUM SENSING TECHNIQUES 

 

Spectrum sensing is a fundamental function of cognitive radio systems, enabling secondary users to identify unused 

spectrum bands while ensuring non-interference with licensed primary users. The primary objective of spectrum sensing 

is to accurately detect the presence or absence of primary user signals in a given frequency band and to identify spectrum 

holes that can be opportunistically accessed by IoT devices [20]. Reliable spectrum sensing is essential for efficient 

spectrum utilization, regulatory compliance, and quality-of-service assurance in cognitive radio–enabled IoT networks. 

Spectrum sensing techniques can be broadly classified based on the detection principle employed. Energy detection is 

the most widely used method due to its low computational complexity and lack of prior knowledge requirements about 

the primary user signal. It determines spectrum occupancy by comparing the received signal energy against a predefined 

threshold. However, its performance degrades significantly under low signal-to-noise ratio (SNR) conditions and noise 

uncertainty [21]. Matched filter detection offers optimal detection performance when the primary user signal 

characteristics are known, as it maximizes the SNR. Despite its accuracy, this method is impractical for heterogeneous 

IoT environments due to high complexity and the need for prior signal information. Cyclostationary feature detection 

exploits periodic statistical properties of modulated signals, enabling robust detection even in noisy environments, though 
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at the cost of increased computational overhead. Waveform-based detection utilizes known signal patterns such as 

preambles or pilots to improve detection accuracy, while compressive sensing leverages signal sparsity to reduce 

sampling rates and sensing overhead, making it suitable for wideband spectrum sensing in resource-constrained IoT 

devices [22]. Fig. 4 represents spectrum sensing scenario [8]. 

 

 
Fig.4: Spectrum Sensing Scenario [8] 

 

To overcome the limitations of individual sensing, cooperative spectrum sensing is employed, where multiple IoT nodes 

collaborate to sense the spectrum. In centralized approaches, sensing data is collected at a fusion center for global 

decision-making, offering high accuracy but increased communication overhead. Distributed approaches eliminate the 

need for a central entity, improving scalability and robustness [23]. Relay-assisted sensing further enhances detection 

reliability by forwarding sensing information through intermediate nodes. 

 

Despite these advancements, spectrum sensing faces several challenges, including fading and shadowing effects that 

distort received signals, noise uncertainty that impacts threshold-based detection, and the hidden primary user problem 

caused by obstacles or deep fading [24]. Performance evaluation of spectrum sensing techniques typically relies on 

metrics such as probability of detection and false alarm, sensing time, and energy efficiency. Balancing accuracy, latency, 

and energy consumption remains a critical design consideration in cognitive IoT networks [25]. 

 

III.        RELATED WORK 

 

Janu et al. [1] (2021) presented a comprehensive survey on machine learning–based cooperative spectrum sensing (CSS) 

and dynamic spectrum sharing (DSS). The study analyzed feature extraction methods, learning paradigms, and 

performance metrics, highlighting supervised, unsupervised, and reinforcement learning approaches. 

Hilina et al. [2] (2019) proposed ML-driven CSS algorithms using K-means, GMM, SVM, and weighted KNN. Energy 

estimates were treated as feature vectors, and results showed superior detection accuracy and reduced delay compared to 

conventional CSS methods. 

Zheng et al. [3] (2020) introduced a robust spectrum sensing approach outperforming eigenvalue- and entropy-based 

techniques. The method demonstrated adaptability to unseen signals and colored noise, with further performance gains 

via transfer learning. 

Gao et al. [4] (2019) developed a deep learning–based signal detector exploiting inherent signal structures without prior 

channel or noise information. A cooperative DL framework further improved sensing performance over traditional 

approaches. 

Nasser et al. [5] (2018) examined the integration of cognitive radio in 5G and beyond networks, focusing on spectrum 

sensing for dynamic frequency allocation. The study outlined key challenges and future research directions. 

Arjoune et al. [6] (2018) provided a detailed survey of spectrum sensing techniques, including narrowband, wideband, 

compressive sensing, and ML-based methods. The paper highlighted implementation challenges and future research 

opportunities. 

Lees et al. [7] (2020) evaluated classical and ML-based radar detection techniques using over 14,000 real-world 

spectrograms. CNN-based models consistently outperformed classical methods, achieving a strong balance between 

accuracy and complexity. 
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Liu et al. [8] (2021) proposed a covariance matrix–aware CNN (CM-CNN) for spectrum sensing with strong theoretical 

analysis. The method achieved near-optimal detection performance at very low SNR levels. 

Lee et al. [9] (2019) introduced Deep Cooperative Sensing (DCS), a CNN-based CSS framework that learns optimal 

fusion strategies without explicit mathematical modeling. The method significantly improved sensing accuracy by 

exploiting spatial and spectral correlations. 

Jaishanthi et al. [10] (2017) proposed a multi-agent–based adaptive spectrum allocation framework. Environmental data 

were used to support intelligent decision-making and improve communication service quality. 

Ramchandran et al. [11] (2018) introduced an energy-efficient and interference-aware spectrum sensing scheme using 

game theory. The approach improved throughput, detection probability, and residual energy of secondary users. 

Zhou et al. [12] (2019) presented a comprehensive survey of deep learning architectures and training methodologies. 

The study highlighted the superiority of DL over traditional ML methods in complex data analysis tasks. 

Song et al. [13] (2020) explored AI-enabled IoT networks with emphasis on spectrum access and sensing. Deep 

reinforcement learning techniques were shown to effectively address dynamic spectrum sharing challenges. 

Delvecchio et al. [14] (2020) investigated adversarial evasion attacks against deep learning–based signal classifiers. The 

work revealed vulnerabilities in ML-enabled communication systems and proposed secure communication strategies. 

Sagduyu et al. [15] (2018) analyzed adversarial attacks targeting learning-based spectrum access. Defense mechanisms 

were proposed to improve robustness and throughput in IoT networks. 

Lin et al. [16] (2021) proposed a hybrid DRL–LSTM framework for UAV spectrum sharing. The approach achieved 

faster convergence and higher throughput compared to conventional RL techniques. 

Shi et al. [17] (2021) presented a deep learning–based signal classification framework addressing unknown signals, 

spoofing, and interference. Integrated scheduling significantly enhanced spectrum sharing performance. 

Zhang et al. [18] (2020) applied asynchronous actor–critic learning for power control in spectrum sharing systems. The 

proposed approach achieved rapid convergence while satisfying QoS requirements. 

Natarajan et al. [21] (2019) proposed a reconfigurable CR-IoT framework optimizing energy efficiency, network 

capacity, and interference. Experimental results demonstrated improved robustness and scalability. 

Zhang et al. [22] (2019) introduced an adaptive modulation and coding selection algorithm. The method significantly 

outperformed UCB and SNR-based schemes with minimal overhead. 

Gupta et al. [28] (2017) provided a comprehensive taxonomy and mathematical modeling of spectrum sensing schemes. 

The survey outlined applications, open issues, and future research directions in cognitive radio networks. 

Venketeswaran et al. [29] presented a comprehensive review of research integrating Machine Learning (ML) and 

Artificial Intelligence (AI) with Fiber Optic Sensing (FOS) technologies. The study highlighted emerging trends in FOS 

development and emphasized their growing importance in industrial applications, particularly energy system monitoring. 

Additionally, the authors identified key challenges and outlined future research directions to enhance intelligent FOS 

deployment. 

Vimal et al. [30] proposed an intelligent caching and cache management framework to reduce execution delays in Mobile 

Edge Computing (MEC) environments. Their approach utilized a cognitive agent model combined with Reinforcement 

Learning, specifically Multi-Objective Ant Colony Optimization (MOACO), to optimize resource allocation. 

Performance evaluation demonstrated improved quality of service and efficient utilization of MEC resources among 

neighboring user equipment. 

 

IV.       DATA FUSION IN COGNITIVE RADIO IOT NETWORKS 

 

TABLE I   SUMMARY OF DATA FUSION IN COGNITIVE RADIO IOT NETWORKS 

 

Ref Focus Area Fusion Level / Rule / 

Architecture 

Results / Limitations 

Hamda et 

al., [31] 

2023 

Multisensor data fusion 

under uncertainty in IoT 

Decision-level fusion using 

Dempster–Shafer theory 

with belief entropy 

weighting 

Improved decision accuracy under 

conflicting sensor data; however, 

computational complexity increases 

with number of sources 

Al-Hassani 

et al., [32] 

2022 

Cooperative spectrum 

sensing in CR-IoT 

AND/OR/L-out-of-N rules, 

centralized fusion 

Achieved higher detection probability 

compared to single-node sensing; 

performance degrades with correlated 

sensing reports 

Li et al., 

[33] 2021 

Bayesian data fusion for 

IoT sensing 

Bayesian fusion, 

centralized architecture 

Provides probabilistic optimal 

decisions; requires accurate prior 

probabilities, limiting practicality in 

dynamic CR-IoT 
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Kumar & 

Bera, [34] 

2020 

Hard and soft decision 

fusion in cognitive radio 

networks 

Decision-level fusion, 

centralized 

Soft fusion improves sensing 

reliability; incurs higher 

communication overhead 

Zhang et 

al., [35] 

2024 

Distributed fusion for 

large-scale IoT 

Distributed fusion 

architecture, feature-level 

fusion 

Enhances scalability and reduces 

latency; limited robustness against 

malicious or faulty nodes 

Rahman et 

al., [36] 

2023 

Trust-aware data fusion in 

CR-IoT 

Hybrid fusion with trust 

weighting 

Reduces false spectrum decisions 

caused by malicious users; trust 

computation adds processing overhead 

Singh et al., 

[37] 2022 

Feature-level fusion for 

IoT data analytics 

Feature-level fusion with 

ML classifiers 

Improves classification accuracy; 

feature extraction increases energy 

consumption in IoT nodes 

Ahmed et 

al., [38] 

2021 

Data-level fusion in 

sensor-based IoT 

Data-level fusion, 

centralized 

Preserves raw information richness; 

sensitive to noise and synchronization 

errors 

Chen et al., 

[39] 2025 

Hybrid fusion architecture 

for CR-enabled IoT 

Hybrid (centralized + 

distributed) fusion 

Balances scalability and accuracy; 

architecture complexity limits real-time 

deployment 

Patel & 

Roy,[40]  

2024 

Communication-efficient 

fusion strategies 

Decision-level fusion with 

compression 

Reduces communication overhead; 

slight degradation in detection accuracy 

 

V. APPLICATIONS AND USE CASES 

 

TABLE III   APPLICATIONS AND USE CASES OF COGNITIVE RADIO–ENABLED IOT NETWORKS  

 

Application 

Domain 

Use Case Role of Cognitive 

Radio 

Spectrum Sensing & Data Fusion 

Benefits 

Key 

Challenges 

Smart Cities Smart traffic 

management, 

surveillance, 

smart lighting 

Dynamic spectrum 

access to support 

dense IoT 

deployments 

Cooperative sensing improves 

spectrum availability; data fusion 

enhances situational awareness and 

decision accuracy 

High node 

density, 

interference, 

scalability 

Industrial IoT Factory 

automation, 

predictive 

maintenance, 

process 

monitoring 

Reliable and low-

latency 

communication in 

congested industrial 

spectrum 

Feature- and decision-level fusion 

improve fault detection and 

spectrum reliability 

Harsh 

environments, 

strict latency 

constraints 

Vehicular 

Networks 

(VANETs) 

Vehicle-to-

Vehicle (V2V) 

and Vehicle-to-

Infrastructure 

(V2I) 

communication 

Opportunistic 

spectrum access for 

high-mobility nodes 

Fast cooperative sensing and fusion 

enable robust connectivity and 

collision avoidance 

High 

mobility, 

rapid 

topology 

changes 

Remote 

Healthcare 

Wearable health 

monitoring, 

emergency alerts 

Adaptive spectrum 

usage ensures 

continuous 

connectivity 

Data fusion integrates multi-sensor 

health data for accurate diagnosis 

and alerts 

Privacy, 

energy 

constraints, 

reliability 

Agriculture & 

Environmental 

Monitoring 

Precision 

farming, soil and 

climate 

monitoring, 

disaster 

detection 

Efficient spectrum 

use in remote and 

rural areas 

Data-level and feature-level fusion 

improve sensing accuracy and 

coverage 

Sparse 

infrastructure, 

energy 

efficiency 
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VI.       OPEN CHALLENGES AND FUTURE DIRECTIONS 

 

Scalability in Large-Scale IoT Deployments 

Designing scalable sensing and fusion frameworks that efficiently manage massive IoT nodes without excessive overhead 

remains a critical challenge [27]. 

Real-Time Processing and Latency 

Achieving low-latency, real-time spectrum sensing and data fusion under dynamic spectrum conditions is essential for 

time-critical IoT applications. 

Security and Privacy in Sensing and Fusion 

Ensuring secure, privacy-preserving sensing and fusion mechanisms against malicious users and data manipulation is an 

open research issue [28]. 

Standardization Efforts 

Lack of unified standards for cognitive IoT sensing and fusion hinders interoperability, large-scale deployment, and 

cross-vendor compatibility. 

Beyond 5G and 6G Integration 

Integrating cognitive IoT with beyond-5G and 6G networks requires intelligent, AI-driven spectrum management and 

ultra-reliable low-latency communication [29]. 

 

VII.      CONCLUSION 

 

This review analyzed intelligent spectrum sensing and fusion methods in cognitive radio-assisted IoT networks, 

technologies that play a crucial role in spectrum scarcity alleviation and support for massive IoT connectivity. The survey 

studied the fundamentals of cognitive radio, such as advanced spectrum sensing methods and multi-level data fusion 

methods, and the fact cooperative sensing and fusion enhance detection accuracy, reliability, and spectrum utilization 

effectively. The paper identified that one can also provide reliable enhancements of fading, noise uncertainty, and hidden 

primary user problems by combining decision-, feature-, and data-level fusion types together with appropriate fusion 

rules and architectures. The same review has seen that intelligent fusion frameworks play a key role in functioning in a 

variety of IoT applications such as intelligent cities, smart industry, vehicular networks, healthcare, and environment 

monitoring. Specifically, this paper put together a collection of recent survey material published from 2020–2025, 

systematically classifying the spectrum sensing and fusion techniques and discussing some practical limitations. This 

attempt also highlighted that future cognitive IoT systems must have AI-enabled and secure, low-latency sensing and 

fusion mechanisms to evolve to the next generation networks such as beyond-5G or 6G. The intelligent spectrum sensing 

and data fusion will always remain key technologies for a robustly intelligent, green, and scalable cognitive radio–enabled 

IoT ecosystem 
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