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Abstract: The rapid proliferation of Internet of Things (IoT) devices has intensified the demand for efficient spectrum
utilization, making traditional static spectrum allocation insufficient. Cognitive Radio (CR) technology emerges as a
promising solution by enabling dynamic spectrum access through intelligent spectrum sensing and adaptive decision-
making. This review paper presents a comprehensive analysis of intelligent spectrum sensing and data fusion techniques
in Cognitive Radio—enabled IoT networks. It systematically examines conventional spectrum sensing approaches,
including energy detection, matched filtering, and cyclostationary detection, highlighting their limitations in noisy,
heterogeneous, and large-scale IoT environments. To address these challenges, the paper explores machine learning and
deep learning—based spectrum sensing methods that enhance detection accuracy, robustness, and adaptability.
Furthermore, the role of data fusion is critically reviewed, focusing on data-level, feature-level, and decision-level fusion
strategies that improve sensing reliability by combining observations from multiple IoT nodes. Intelligent data fusion
techniques based on neural networks, fuzzy logic, and reinforcement learning are also discussed, emphasizing their
capability to reduce uncertainty and communication overhead. The integration of spectrum sensing and data fusion within
edge and fog computing paradigms is analyzed to support real-time and energy-efficient loT applications. Finally, the
paper identifies open research challenges related to scalability, security, latency, and standardization, and outlines future
research directions toward 6G-enabled cognitive IoT systems. This review aims to serve as a valuable reference for
researchers and practitioners working on intelligent spectrum management in next-generation IoT networks

Keywords: Cognitive Radio, Spectrum Sensing, Data Fusion, Internet of Things, Machine Learning, Cooperative
Sensing, Dynamic Spectrum Access.

I INTRODUCTION

The rise of the Internet of things (IoT) has changed the entire landscape of communication networks, having enabled
billions of diverse objects to feel, process, and transmit information in real time. Several real-world scenarios, e.g., smart
cities, industrial automation, health monitoring, intelligent transportation, and environment sensing, critically depend
upon "continuous" and "reliable" wireless networking [1]. The big adopted wave of IoT technologies that have been
proliferated across the globe has aggravated the need for radio spectrum and overcrowded traditionally leased areas. In
this context, highlights of current spectrum measurements have shown how much of the spectrum has remained
underutilized within the confines of time, space, and frequency. Such underutilization counteracts the general belief in
spectrum scarcity and thus shows the downside of a rigid spectrum allocation policy, hence suggesting the way for much
more creative and adaptive spectrum management approache [2].

In the Internet of Things (IoT), cognitive radio (CR) technology provides the potential promise for overcoming the
constraints, allowing for dynamic spectrum access. Cognitive radio is an intelligent wireless system that can sense the
radio environment around it, learn from observation, and adapt autonomously for its transmission parameters so as to
utilize whatever available spectrum while curbing interference to its detriment to the licensed or primary users. Integration
with IoT networks enables cognitive radio to provide efficient spectrum sharing, enhance spectral efficiency, and allow
scalable connectivity to resource-constrained devices [3]. Various reasons underscore the relevance of cognitive radio in
the IoT, such as scarcity in spectrum, diversity of quality of service (QoS) requirements among IoT applications,
limitations in constraints for energy efficiency, and communication reliability for environments that are dynamic and
heterogeneous. Cognitive-radio empowered IoT networks can effectively employ idle spectrum bands, thus
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simultaneously alleviating congestion, enhancing throughput, and augmenting the number of devices, such a scenario
forming the linchpin for next-generation wireless systems [4].

The most basic radio operation is based on spectrum sensing. To enable secondary IoT devices to observe the presence
or absence of primary users' signals and locate spectrum opportunities. The efficiency of the use of that spectrum depends
on the reliability with which spectrum sensing is performed while ensuring protection is extended to licensed users [5].
The most common methods for sensing include largely energy detection, matched filtering, and cyclostationarity
detection, known for their major benefits: simplicity, and theoretical underpinning. These, however, do not work well in
the environment characterized by low S/N ratio, severe fading and shadowing, hardware loin(ts, and unpredictable traffic
[6]. The best fit in this case is the cooperative spectrum sensing method where multiple IoT nodes are employed to sense
a given band so that observations may be collated to enable betterre/liability thresholds of detection. The performance of
cooperative energy detection will be well enhanced whereas there may come in a matter of challenges regarding
communication overhead, scalability, and decision accuracy [7].

Data fusion holds a prime importance for cooperative spectrum sensing, where information is fused across different nodes
for more reliable global decisions. Depending on the level of abstraction, this fusion can take place in the data level,
feature level, or decision level, each one plently of trade-offs between complexity, performance, and communication cost.
Improved data fusion translates to improved detection performance, reduced false alarm rate, and robustness to channel
distortions and malicious behaviors [8]. In cognitive radio enabled IoT networks, intelligent data fusion is equally of
importance, given the fact of numerous distributed and resource-constrained devices [9]. Advanced fusion strategies, the
likes of Bayesian theory, Dempster-Shafer, fuzzy logic, optimization techniques, handle uncertainty and heterogeneity
of sensing reports. Recently, deliberations around machine learning and deep learning fusion methods were ongoing due
to their capability to learn complex patterns, adapt to dynamic environments and enhance decision accuracy without strict
statistical assumptions [7][10].

While considerable efforts have been made, a few challenges and avenues that need further research still exist in the
intelligent spectrum sensing mechanisms and data fusion in the cognitive IoT network paradigm. Scalability in this
respect is a serious issue since the centralised sensing and fusion methods that are standard nearly the world over seem
inadequate to handle the huge numbers of IoT devices. According to another angle, energy efficiency is very pressing
due to the rapid drainage of the battery resources of the IoT nodes through frequent sensing and reporting 10]. Besides
this, noise uncertainty, mobility, hidden primary user, and correlated sensing data tend to degrade spectrum-sensing
accuracy further. Security and privacy make spectrum access all the more reliable, with issues like false data injection
and malice of sensing attacks. In sum, many of these studies rely on idealistic assumptions or rigorous simulation-based
evaluations and hence their thirst for real-metal models, real data sets, and practices. Integration of edge and fog
computing to decentralized intelligence, and their alignment with emerging 6G communication frameworks, all are still
open research topics [11]. Fig.1 represents Block Diagram of Cognitive Radio.
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Fig. 1: Block Diagram of Cognitive Radio
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In order to overcome these challenges, intelligent spectrum scan and data fusion mechanisms in cognitive radio-enabled
IoT networks are extensively analyzed in an organized enumerative review paper is shown. The paper lays down a
systematic lay review of the conventional spectrum sensing methods and machine learning-based spectrum sensing
methods, discusses data fusion strategies strictly built across different layers of abstraction, and highly emphasizes, in
brief, the modern intelligent and adaptive fusion methodology with its unique marksmanship [12]. Besides, the work
identifies existing integration models that marry sensing and fusion with edge intelligence to improve scalability and
real-time performance. Through the identification of the open challenges in the research field, the article is supposed to
provide some showcasing for researchers, starting toward efficient and intelligent spectrum management in the modern
IoT context [13].

L Fundamentals of Cognitive Radio and IoT

The convergence of Cognitive Radio (CR) and the Internet of Things (IoT) represents a transformative shift for addressing
spectrum inefficiency and connectivity challenges in Commonwealth wireless communication ecosystems. The IoT
network consists of excessive homogeneous and low-power devices, which anticipate reliable and scalable
communication.

Cognitive Radio: Principles

Cognitive Radio is the intelligent wireless communication technology that adjusts the performance by sensing and
learning from the surrounding radio ecological settings. Cognitive radio was first introduced by Mitola, who had
developed the concept to enhance the spectrum efficiency by allowing the unlicensed or secondary users to opportunely
get access to the underutilized licensed bandwidth without causing harmful interference to the primary users [14]. The
core operations of cognitive radio lie in the cognitive cycle, which summarizes spectrum sensing, spectrum analysis,
spectrum decision, spectrum mobility, and spectrum sharing.

Internet of Things (IoT) Overvie

The Internet of Things (IoT) is a concept in which there exists a network of interconnected physical entities that are
empowered with sensors, actuators, processing units, and communication interfaces, to collect and exchange data over
the Internet. IoT devices, thus, scope into smart homes, healthcare, industrial automation, agriculture, transportation,
environmental monitoring, and other domains.[15] The computing capability, memory, and energy resources of these
devices are mostly limited while setting forth computational requirements to manage voluminous data with
communication reliability [16].

IoT Communication Challenges

Challenges that immediately limit the performance and scalability of the network for [oT communication are the very
issues ensuing through the mass connectivity of devices. Thousands of devices may attempt connectivity with the network
simultaneously, causing congestion and a greater probability of collision [17]. Energy efficiency is a matter of much
concern-other than these-devices being small and self-sustained by their own batteries. Given battery strength and
expected operational durations in the long run without maintenance, any operation requiring recurring communication
and sensing will-day by day and even more-obviously affect device lifetime [18]. Fig. 2 represents Cognitive radio (CR)-
Internet of Things (IoT) spectrum-heterogeneous environment
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Fig. 2: Cognitive radio (CR)-Internet of Things (IoT) spectrum-heterogeneous environment
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Spectrum Scarcity and Underutilization

With wireless services and IoT deployments marching on without stopping, spectrum scarcity has arisen as a serious
problem. About any frequency band instead appears to be statically assigned to developed license holders, leading to
congestion in popular bands (e.g., ISM). However, any periodic and geographical dimension will attest empirical studies
that display underutilization, with multiple licensed spectrum bands. Rigidity in the regulatory structure prevents frequent
spectrum assignment ultimately leading to ineffectiveness [19].

Cognitive Radio—Enabled IoT Architecture

Over the conventional IoT communication paradigms, the implementation of Cognitive Radio-based technologies, in
general, represents the idea of introducing spectrum-use awareness intelligence. These cognitive-radio-equipped IoT
devices come endowed with spectrum-sensing modules and adaptive transceivers. They basically keep an eye on the
radio environment to detect vacant spectrums and immediately adjust their transmission-related parameters [17]-[18].
Moreover their many [oT nodes are engaged in a cooperative and collaborative spectrum-sensing operation whereby the
multiple sensor nodes share the crucial information needed for enhancing accuracy with regard to detection.

Smart data fusion may involve central or distributed decision-making entities, such as fusion centers, edge servers, or fog
nodes, aggregating sensor data. Edge computing is very crucial by significantly minimizing latency and communications
overhead through local processing and real-time decision-making. The architecture employs learning mechanisms, such
as machine learning models, to increase the response mechanism and allow for long-term optimization [19]. It is expected
that the integrated framework may provide energy efficiency, scalability, and the reliability of communications, tailored
well for future IoT systems and networks beyond 5G/6G. Fig. 3 represents Cognitive Radio Network Architecture.
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Fig. 3: Cognitive Radio Network Architecture
II. SPECTRUM SENSING TECHNIQUES

Spectrum sensing is a fundamental function of cognitive radio systems, enabling secondary users to identify unused
spectrum bands while ensuring non-interference with licensed primary users. The primary objective of spectrum sensing
is to accurately detect the presence or absence of primary user signals in a given frequency band and to identify spectrum
holes that can be opportunistically accessed by IoT devices [20]. Reliable spectrum sensing is essential for efficient
spectrum utilization, regulatory compliance, and quality-of-service assurance in cognitive radio—enabled IoT networks.

Spectrum sensing techniques can be broadly classified based on the detection principle employed. Energy detection is
the most widely used method due to its low computational complexity and lack of prior knowledge requirements about
the primary user signal. It determines spectrum occupancy by comparing the received signal energy against a predefined
threshold. However, its performance degrades significantly under low signal-to-noise ratio (SNR) conditions and noise
uncertainty [21]. Matched filter detection offers optimal detection performance when the primary user signal
characteristics are known, as it maximizes the SNR. Despite its accuracy, this method is impractical for heterogeneous
IoT environments due to high complexity and the need for prior signal information. Cyclostationary feature detection
exploits periodic statistical properties of modulated signals, enabling robust detection even in noisy environments, though
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at the cost of increased computational overhead. Waveform-based detection utilizes known signal patterns such as
preambles or pilots to improve detection accuracy, while compressive sensing leverages signal sparsity to reduce
sampling rates and sensing overhead, making it suitable for wideband spectrum sensing in resource-constrained IoT
devices [22]. Fig. 4 represents spectrum sensing scenario [8].
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Fig.4: Spectrum Sensing Scenario [8]

To overcome the limitations of individual sensing, cooperative spectrum sensing is employed, where multiple IoT nodes
collaborate to sense the spectrum. In centralized approaches, sensing data is collected at a fusion center for global
decision-making, offering high accuracy but increased communication overhead. Distributed approaches ecliminate the
need for a central entity, improving scalability and robustness [23]. Relay-assisted sensing further enhances detection
reliability by forwarding sensing information through intermediate nodes.

Despite these advancements, spectrum sensing faces several challenges, including fading and shadowing effects that
distort received signals, noise uncertainty that impacts threshold-based detection, and the hidden primary user problem
caused by obstacles or deep fading [24]. Performance evaluation of spectrum sensing techniques typically relies on
metrics such as probability of detection and false alarm, sensing time, and energy efficiency. Balancing accuracy, latency,
and energy consumption remains a critical design consideration in cognitive IoT networks [25].

I11. RELATED WORK

Janu et al. [1] (2021) presented a comprehensive survey on machine learning—based cooperative spectrum sensing (CSS)
and dynamic spectrum sharing (DSS). The study analyzed feature extraction methods, learning paradigms, and
performance metrics, highlighting supervised, unsupervised, and reinforcement learning approaches.

Hilina et al. [2] (2019) proposed ML-driven CSS algorithms using K-means, GMM, SVM, and weighted KNN. Energy
estimates were treated as feature vectors, and results showed superior detection accuracy and reduced delay compared to
conventional CSS methods.

Zheng et al. [3] (2020) introduced a robust spectrum sensing approach outperforming eigenvalue- and entropy-based
techniques. The method demonstrated adaptability to unseen signals and colored noise, with further performance gains
via transfer learning.

Gao et al. [4] (2019) developed a deep learning—based signal detector exploiting inherent signal structures without prior
channel or noise information. A cooperative DL framework further improved sensing performance over traditional
approaches.

Nasser et al. [5] (2018) examined the integration of cognitive radio in 5G and beyond networks, focusing on spectrum
sensing for dynamic frequency allocation. The study outlined key challenges and future research directions.

Arjoune et al. [6] (2018) provided a detailed survey of spectrum sensing techniques, including narrowband, wideband,
compressive sensing, and ML-based methods. The paper highlighted implementation challenges and future research
opportunities.

Lees et al. [7] (2020) evaluated classical and ML-based radar detection techniques using over 14,000 real-world
spectrograms. CNN-based models consistently outperformed classical methods, achieving a strong balance between
accuracy and complexity.
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Liu et al. [8] (2021) proposed a covariance matrix—aware CNN (CM-CNN) for spectrum sensing with strong theoretical
analysis. The method achieved near-optimal detection performance at very low SNR levels.

Lee et al. [9] (2019) introduced Deep Cooperative Sensing (DCS), a CNN-based CSS framework that learns optimal
fusion strategies without explicit mathematical modeling. The method significantly improved sensing accuracy by
exploiting spatial and spectral correlations.

Jaishanthi et al. [10] (2017) proposed a multi-agent—based adaptive spectrum allocation framework. Environmental data
were used to support intelligent decision-making and improve communication service quality.

Ramchandran et al. [11] (2018) introduced an energy-efficient and interference-aware spectrum sensing scheme using
game theory. The approach improved throughput, detection probability, and residual energy of secondary users.

Zhou et al. [12] (2019) presented a comprehensive survey of deep learning architectures and training methodologies.
The study highlighted the superiority of DL over traditional ML methods in complex data analysis tasks.

Song et al. [13] (2020) explored Al-enabled IoT networks with emphasis on spectrum access and sensing. Deep
reinforcement learning techniques were shown to effectively address dynamic spectrum sharing challenges.

Delvecchio et al. [14] (2020) investigated adversarial evasion attacks against deep learning—based signal classifiers. The
work revealed vulnerabilities in ML-enabled communication systems and proposed secure communication strategies.
Sagduyu et al. [15] (2018) analyzed adversarial attacks targeting learning-based spectrum access. Defense mechanisms
were proposed to improve robustness and throughput in IoT networks.

Lin et al. [16] (2021) proposed a hybrid DRL-LSTM framework for UAV spectrum sharing. The approach achieved
faster convergence and higher throughput compared to conventional RL techniques.

Shi et al. [17] (2021) presented a deep learning—based signal classification framework addressing unknown signals,
spoofing, and interference. Integrated scheduling significantly enhanced spectrum sharing performance.

Zhang et al. [18] (2020) applied asynchronous actor—critic learning for power control in spectrum sharing systems. The
proposed approach achieved rapid convergence while satisfying QoS requirements.

Natarajan et al. [21] (2019) proposed a reconfigurable CR-IoT framework optimizing energy efficiency, network
capacity, and interference. Experimental results demonstrated improved robustness and scalability.

Zhang et al. [22] (2019) introduced an adaptive modulation and coding selection algorithm. The method significantly
outperformed UCB and SNR-based schemes with minimal overhead.

Gupta et al. [28] (2017) provided a comprehensive taxonomy and mathematical modeling of spectrum sensing schemes.
The survey outlined applications, open issues, and future research directions in cognitive radio networks.
Venketeswaran et al. [29] presented a comprehensive review of research integrating Machine Learning (ML) and
Artificial Intelligence (AI) with Fiber Optic Sensing (FOS) technologies. The study highlighted emerging trends in FOS
development and emphasized their growing importance in industrial applications, particularly energy system monitoring.
Additionally, the authors identified key challenges and outlined future research directions to enhance intelligent FOS
deployment.

Vimal et al. [30] proposed an intelligent caching and cache management framework to reduce execution delays in Mobile
Edge Computing (MEC) environments. Their approach utilized a cognitive agent model combined with Reinforcement
Learning, specifically Multi-Objective Ant Colony Optimization (MOACO), to optimize resource allocation.
Performance evaluation demonstrated improved quality of service and efficient utilization of MEC resources among
neighboring user equipment.

Iv. DATA FUSION IN COGNITIVE RADIO IOT NETWORKS

TABLEI SUMMARY OF DATA FUSION IN COGNITIVE RADIO IOT NETWORKS

et al., [32]
2022

sensing in CR-IoT

Ref Focus Area Fusion Level / Rule / Results / Limitations
Architecture
Hamda et Multisensor data fusion Decision-level fusion using | Improved decision accuracy under
al., [31] under uncertainty in IoT Dempster—Shafer theory conflicting sensor data; however,
2023 with belief entropy computational complexity increases
weighting with number of sources
Al-Hassani | Cooperative spectrum AND/OR/L-out-of-N rules, | Achieved higher detection probability

centralized fusion

compared to single-node sensing;
performance degrades with correlated
sensing reports

Li et al.,
[33] 2021

Bayesian data fusion for
IoT sensing

Bayesian fusion,
centralized architecture

Provides probabilistic optimal
decisions; requires accurate prior
probabilities, limiting practicality in
dynamic CR-IoT

© IARJSET

This work is licensed under a Creative Commons Attribution 4.0 International License 395


https://iarjset.com/

IARJSET ISSN (O) 2393-8021, ISSN (P) 2394-1588

3 International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.311 :: Peer-reviewed & Refereed journal :: Vol. 12, Issue 12, December 2025
DOI: 10.17148/IARJSET.2025.121260

Kumar & Hard and soft decision Decision-level fusion, Soft fusion improves sensing

Bera, [34] fusion in cognitive radio centralized reliability; incurs higher

2020 networks communication overhead

Zhang et Distributed fusion for Distributed fusion Enhances scalability and reduces

al., [35] large-scale [oT architecture, feature-level latency; limited robustness against

2024 fusion malicious or faulty nodes

Rahman et | Trust-aware data fusion in | Hybrid fusion with trust Reduces false spectrum decisions

al., [36] CR-IoT weighting caused by malicious users; trust

2023 computation adds processing overhead

Singh et al., | Feature-level fusion for Feature-level fusion with Improves classification accuracy;

[37] 2022 IoT data analytics ML classifiers feature extraction increases energy
consumption in IoT nodes

Ahmed et Data-level fusion in Data-level fusion, Preserves raw information richness;

al., [38] sensor-based IoT centralized sensitive to noise and synchronization

2021 €ITors

Chen et al., | Hybrid fusion architecture | Hybrid (centralized + Balances scalability and accuracy;

[39] 2025 for CR-enabled [oT distributed) fusion architecture complexity limits real-time
deployment

Patel & Communication-efficient Decision-level fusion with Reduces communication overhead;

Roy,[40] fusion strategies compression slight degradation in detection accuracy

2024

V. APPLICATIONS AND USE CASES

TABLEIII APPLICATIONS AND USE CASES OF COGNITIVE RADIO-ENABLED IOT NETWORKS

Application Use Case Role of Cognitive Spectrum Sensing & Data Fusion Key
Domain Radio Benefits Challenges
Smart Cities Smart traffic Dynamic spectrum Cooperative sensing improves High node
management, access to support spectrum availability; data fusion density,
surveillance, dense IoT enhances situational awareness and | interference,
smart lighting deployments decision accuracy scalability
Industrial IoT | Factory Reliable and low- Feature- and decision-level fusion Harsh
automation, latency improve fault detection and environments,
predictive communication in spectrum reliability strict latency
maintenance, congested industrial constraints
process spectrum
monitoring
Vehicular Vehicle-to- Opportunistic Fast cooperative sensing and fusion | High
Networks Vehicle (V2V) spectrum access for enable robust connectivity and mobility,
(VANETY) and Vehicle-to- high-mobility nodes collision avoidance rapid
Infrastructure topology
(V2D changes
communication
Remote Wearable health | Adaptive spectrum Data fusion integrates multi-sensor | Privacy,
Healthcare monitoring, usage ensures health data for accurate diagnosis energy
emergency alerts | continuous and alerts constraints,
connectivity reliability
Agriculture & | Precision Efficient spectrum Data-level and feature-level fusion | Sparse
Environmental | farming, soil and | use in remote and improve sensing accuracy and infrastructure,
Monitoring climate rural areas coverage energy
monitoring, efficiency
disaster
detection
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VI. OPEN CHALLENGES AND FUTURE DIRECTIONS

Scalability in Large-Scale IoT Deployments

Designing scalable sensing and fusion frameworks that efficiently manage massive IoT nodes without excessive overhead
remains a critical challenge [27].

Real-Time Processing and Latency

Achieving low-latency, real-time spectrum sensing and data fusion under dynamic spectrum conditions is essential for
time-critical IoT applications.

Security and Privacy in Sensing and Fusion

Ensuring secure, privacy-preserving sensing and fusion mechanisms against malicious users and data manipulation is an
open research issue [28].

Standardization Efforts

Lack of unified standards for cognitive IoT sensing and fusion hinders interoperability, large-scale deployment, and
cross-vendor compatibility.

Beyond 5G and 6G Integration

Integrating cognitive IoT with beyond-5G and 6G networks requires intelligent, Al-driven spectrum management and
ultra-reliable low-latency communication [29].

VII. CONCLUSION

This review analyzed intelligent spectrum sensing and fusion methods in cognitive radio-assisted IoT networks,
technologies that play a crucial role in spectrum scarcity alleviation and support for massive IoT connectivity. The survey
studied the fundamentals of cognitive radio, such as advanced spectrum sensing methods and multi-level data fusion
methods, and the fact cooperative sensing and fusion enhance detection accuracy, reliability, and spectrum utilization
effectively. The paper identified that one can also provide reliable enhancements of fading, noise uncertainty, and hidden
primary user problems by combining decision-, feature-, and data-level fusion types together with appropriate fusion
rules and architectures. The same review has seen that intelligent fusion frameworks play a key role in functioning in a
variety of IoT applications such as intelligent cities, smart industry, vehicular networks, healthcare, and environment
monitoring. Specifically, this paper put together a collection of recent survey material published from 2020-2025,
systematically classifying the spectrum sensing and fusion techniques and discussing some practical limitations. This
attempt also highlighted that future cognitive IoT systems must have Al-enabled and secure, low-latency sensing and
fusion mechanisms to evolve to the next generation networks such as beyond-5G or 6G. The intelligent spectrum sensing
and data fusion will always remain key technologies for a robustly intelligent, green, and scalable cognitive radio—enabled
IoT ecosystem
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