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Abstract: Melanoma is one of the highly aggressive types of skin cancer, and early detection plays a critical role in 

patient survival. Although dermoscopy exposes subtle lesion patterns for clinical evaluation, manual diagnosis can be 

slow and heavily dependent on specialist expertise. Deep-learning methods have improved automated melanoma 

identification substantially, yet many current models still encounter real-world challenges, including noisy inputs, non-

lesion images, variable lighting conditions, and class imbalance. To address these limitations, this study introduces 

Melanoma Spotter, a dual-stage diagnostic system that combines a lesion-validation network with a hybrid VGG16–

DenseNet121 classifier. The validation stage removes irrelevant or low-quality images to ensure that only true 

dermoscopic data proceeds to analysis, while the fused CNN model exploits the complementary strengths of both 

architectures to produce more stable and accurate predictions. Experimental results on dermoscopic datasets show 

improved reliability, higher confidence calibration, and better robustness than standalone networks. Overall, Melanoma 

Spotter demonstrates strong promise as a practical deep-learning solution to support early detection of melanoma in 

clinical settings. 
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I. INTRODUCTION 

 

Skin cancer remains one of the most frequently diagnosed forms of cancer worldwide, with melanoma recognized as 

the most lethal and aggressive variant among them [1], [2]. The continuous rise in melanoma incidence across global 

populations emphasizes the urgent requirement for effective early-screening solutions capable of enabling timely 

medical action [3]. Dermoscopy has advanced clinical diagnosis by allowing visualization of deeper lesion structures 

that are otherwise invisible to the naked eye. Even so, its accuracy is strongly reliant on the skill level and interpretive 

proficiency of dermatologists, which can introduce inconsistency in evaluations [4], [5]. This dependence on expert 

interpretation has fueled increasing interest in automated diagnostic tools designed to deliver stable, objective 

assessments and aid clinicians in decision-making [6]. 

Before deep learning became the dominant approach, melanoma detection was primarily performed using conventional 

image-processing pipelines that depended on handcrafted visual descriptors, including lesion shape, asymmetry, border 

sharpness, pigment distribution, and surface texture patterns [7]. While these engineered features offered valuable 

diagnostic cues, their effectiveness was often limited by variations in image resolution, artifacts, and segmentation 

challenges factors that reduced reliability and made clinical scaling difficult [8]. The emergence of convolutional neural 

networks (CNNs) transformed melanoma analysis by enabling automatic learning of hierarchical image features 

directly from dermoscopic scans, leading to far superior classification accuracy compared to traditional feature-based 

methods [9], [10]. With the incorporation of transfer learning, performance improved further, as pretrained 

architectures such as VGG16, DenseNet121, Inception, and ResNet could be fine-tuned on medical datasets where 

annotated examples are typically scarce [11], [12]. 

In recent years, ensemble and hybrid deep-learning frameworks have attracted considerable attention, as integrating 

multiple CNN models allows systems to leverage their individual strengths, resulting in more consistent predictions and 

higher resilience to errors [13], [14]. However, certain real-world challenges persist such as incorrect classification of 

non-lesion inputs, imbalanced representation of lesion types, and variations caused by different imaging conditions 

[15], [16]. Research indicates that incorporating an initial validation or screening component, like a lesion-verification 
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network, can effectively minimize these issues by filtering out irrelevant or poor-quality images before classification 

takes place [17], [18]. Motivated by these findings, the present study proposes a combined VGG16–DenseNet121 

architecture augmented with a specialized lesion-validation stage aimed at increasing model reliability, improving 

confidence calibration, and providing more stable diagnostic performance for melanoma recognition [19], [20]. 

 

II. LITERATURE REVIEW 

 

Over the last decade, automated melanoma detection has advanced significantly, evolving from traditional machine 

learning techniques to sophisticated deep-learning models. Initial studies were largely built around manually crafted 

features derived from lesion boundaries, color variations, and textural attributes. Although these early feature-

engineering methods offered foundational progress, they were highly sensitive to image quality and often produced 

inconsistent results when affected by lighting changes, device differences, or segmentation inaccuracies [21]. The 

introduction of dermoscopy improved diagnostic capability by exposing subsurface lesion structures that are otherwise 

hidden, yet clinical evaluation still remained partly subjective and dependent on the expertise and judgment of the 

dermatologist [22].  

The introduction of convolutional neural networks (CNNs) represented a pivotal shift in melanoma analysis, as these 

models are capable of learning deep, hierarchical feature representations directly from unprocessed images. This 

advancement led to notable gains in both reliability and classification accuracy when compared with conventional 

feature-engineering methods [23]. Performance improved further with the adoption of transfer-learning techniques, 

where pretrained backbones such as VGG16, DenseNet121, and various ResNet families were fine-tuned for medical 

datasets an especially beneficial strategy in domains with limited labeled samples [24]. As the field matured, ensemble 

and hybrid architectures gained recognition, as the fusion of multiple CNN models consistently enhanced robustness, 

sensitivity, and overall predictive steadiness across different lesion types [25].  

Despite these improvements, real-world deployment still presents challenges. Many diagnostic pipelines struggle with 

non-dermoscopic inputs, poor lighting, and imaging artifacts, which may consequently degrade prediction reliability 

[26]. To counter these issues, preprocessing modules, lesion screening networks, and validation filters have been 

introduced to ensure that only clinically meaningful images proceed to classification, thereby minimizing cascading 

errors and strengthening diagnostic confidence [27]. Emerging advancements such as attention mechanisms, multi-

scale feature integration, and hybrid fusion strategies have further increased the ability of models to capture fine-

grained lesion patterns and distinguish between visually similar melanoma classes [28], [29], [30]. Expanding upon 

these developments, the hybrid system proposed in this study integrates deep feature fusion with an input-verification 

stage, resulting in a more stable, trustworthy, and clinically relevant melanoma detection framework. 

 

III. METHODOLOGY 

 

A. Dataset Description  

The dataset used in this study is sourced from the widely recognized HAM10000 (“Human Against Machine”) dermo- 

scopic image collection, available through Kaggle and fre- quently adopted as a standard benchmark for melanoma re- 

search. This dataset brings together high-quality dermoscopic images gathered from multiple clinical environments, 

forming one of the most comprehensive and diverse repositories of pigmented skin lesions. It covers seven clinically 

significant di- agnostic classes—Melanoma (MEL), Melanocytic Nevi (NV), Basal Cell Carcinoma (BCC), Actinic 

Keratosis (AKIEC), Benign Keratosis (BKL), Dermatofibroma (DF), and Vascular Lesions (VASC) which represent 

the key lesion categories commonly examined in dermatology practice [11], [14].  

Each dermoscopic image is accompanied by structured annotation data sourced from the International Skin Imaging 

Collaboration (ISIC). This metadata contains dermatologist approved labels, lesion references, and relevant clinical 

descriptors, ensuring the reliability and precision of ground truth annotations. ISIC’s validation workflow built on 

expert consensus further reinforces the quality of label assignments. Supplementary attributes, including the anatomical 

location of the lesion, patient demographics, and image acquisition method, enable more comprehensive analysis and 

allow models to interpret features within a clinically meaningful context.  

A noteworthy strength of the HAM10000 dataset is its intrinsic visual diversity. Images vary substantially in terms of 

patient skin tones, imaging devices, illumination conditions, and lesion morphology. Such variability is essential for 

train- ing deep learning models that must operate effectively across heterogeneous real-world scenarios. By combining 

the curated dermoscopic images from HAM10000 with the detailed ISIC metadata, this study benefits from a robust 

and trustworthy dataset foundation suitable for building and evaluating a high- performance melanoma detection 

system.  
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Fig. 1. Dermoscopic images. 

Fig. 2. Dermoscopic images. 

 

B. Image Preprocessing  

Prior to model ingestion, the dermoscopic images underwent a series of preprocessing operations designed to enhance 

compatibility with the selected architectures and improve learning stability. Each image was scaled to a resolution of 

224×224 pixels to conform to the input size required by VGG16 and DenseNet121, enabling effective transfer of 

pretrained ImageNet weights. After resizing, pixel intensities were normalized to maintain uniform value distribution, 

contributing to smoother gradient behavior during optimization. To further strengthen generalization capability, a 

comprehensive augmentation strategy was applied, incorporating random rotations, vertical and horizontal reflections, 

zoom variations, and controlled modifications in brightness and contrast. Such augmentation reflects the variability 

encountered in practical clinical environments, enabling the network to handle fluctuations in lighting, lesion 

orientation, and device settings more effectively—an advantage highlighted in earlier recognizing subtle pigment 

variations, dermatology-focused research [13], [18].  

Beyond the standard preprocessing operations, model specific refinements were incorporated to better match the input 

data with the statistical expectations of each architecture. For VGG16, this involved subtracting the ImageNet mean 

values across RGB channels so that the input images more closely reflect the distribution present during pretraining. 

Aligning the pixel statistics in this way minimizes domain shift and supports reliable feature extraction in the early 

convolutional layers. DenseNet121, on the other hand, benefits more from normalized pixel scaling, which helps its 

densely linked blocks capture intricate lesion patterns, tonal gradients, and subtle chromatic differences with greater 

precision. Together, these tailored preprocessing steps ensure that both networks receive well-balanced input 

representations, strengthening learned features and enhancing downstream performance when their outputs are 

integrated within the hybrid fusion framework [13], [18]. 

 

C. Skin-Lesion Detector  

The initial component of the proposed framework features a binary CNN-driven lesion-validation module, whose 

purpose is to confirm whether an incoming image genuinely depicts a dermoscopic skin lesion before it advances to the 

hybrid classification stage. For training this verifier, the dataset was divided into two explicit groups: a positive class 
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consisting of authentic dermoscopic lesion samples and a negative class comprising non-lesion imagery, including 

photographs of normal skin, miscellaneous objects, digital screens, and general everyday scenes. Presenting the model 

with such contrasting categories enables it to learn strong discriminative boundaries between medically relevant lesion 

features and ordinary visual patterns. During real-time inference, this unit operates as a screening mechanism, 

discarding irrelevant or low-quality images that could otherwise mislead the classifier and introduce diagnostic errors. 

This approach directly addresses concerns raised in previous studies, where CNN based melanoma models occasionally 

misclassified non-lesion inputs due to over-reliance on superficial color or texture cues rather than true dermatological 

structures [17], [26], [27]. By ensuring that only validated dermoscopic samples enter the classification stage, the 

system achieves improved reliability and minimizes false-positive risks in practical deployment scenarios.  

 

D. Feature Extraction  

Using VGG16 and DenseNet121 VGG16 and DenseNet121 operate as two independent yet mutually reinforcing 

feature extractors in the proposed hybrid model, each offering a unique analytical viewpoint for dermoscopic image 

interpretation. VGG16 employs a clean, sequential convolutional structure that excels at learning broad visual patterns. 

Its hierarchical layers capture large-scale lesion attributes such as symmetry, contour sharpness, and overall geometric 

form features that are frequently used by clinicians to differentiate benign lesions from malignant ones. DenseNet121, 

in contrast, introduces densely linked convolutional layers where feature maps are shared across all subsequent layers. 

This architecture promotes uninterrupted information flow and preserves intricate spatial micro-textural differences, 

and fine-scale irregular regions commonly associated with early melanoma development. The combination of these two 

networks results in a richer, multi-level feature space than either architecture could produce alone. VGG16 offers 

strong structural awareness, while DenseNet121 contributes detailed local feature precision, together forming a more 

comprehensive and discriminative representation of input lesions. Prior dermatology-focused transfer-learning research 

supports this synergy, showing that multi-CNN fusion improves model consistency, resilience, and diagnostic 

reliability [12], [23], [28].  

 

E. Hybrid Fusion Mechanism  

The predictions generated by VGG16 and DenseNet121 are combined through a weighted averaging scheme, allowing 

the system to balance each model’s contribution based on its relative performance.  

Pfinal=0.5 ∗ PV GG16 + 0.5 ∗ PDenseNet121 (1)  

Hybrid fusion combines the strengths of both VGG16 and DenseNet121 by merging their feature outputs into a single, 

richer representation. VGG16 contributes strong global and structural cues, while DenseNet121 adds detailed textural 

information. By blending these complementary features, the fusion layer creates more stable and reliable predictions, 

reduces fluctuations in confidence scores, and helps the model handle ambiguous or visually complex lesions more 

effectively [20], [25]. 

 

TABLE I 

PERFORMANCE METRICS OF MODELS 

 

 

 

 

 

IV.        SYSTEM ARCHITECTURE 

 

The proposed framework operates through a three-stage processing pipeline, with each stage playing a crucial role in 

strengthening prediction accuracy and overall diagnostic reliability. The first stage consists of a lesion-validation 

module, in which a binary CNN identifies whether the incoming image truly represents a dermoscopic skin lesion. 

Filtering irrelevant, low-quality, or non-clinical images at this point prevents unsuitable data from entering the 

classification stream, thereby reducing confusion and downstream error propagation. This design aligns with multi-

layer diagnostic methodologies that prioritize screening as a means to lower false-positive occurrence and enhance 

clinical trustworthiness [17].  

Once an image is validated, it proceeds to the second stage, which consists of preprocessing and parallel feature 

extraction. The preprocessed images are forwarded to VGG16 and DenseNet121, which run side-by-side as part of a 

dual- CNN feature extraction setup. VGG16 contributes structured, high-level spatial information, while DenseNet121 

captures intricate textural cues and densely connected feature patterns. Running these networks in parallel allows the 

system to exploit both global and fine-grained lesion characteristics, supporting multi-scale learning strategies that have 

shown considerable success in recent hybrid melanoma-detection research [29].  

In the final phase of the pipeline, feature outputs from both CNN branches are integrated within a fusion and decision 

Model Test Accuracy Train Accuracy 

VGG16 84.6% 78% 

DenseNet121 85.2% 80.39% 
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layer. The representations learned by VGG16 and DenseNet121 are concatenated into a unified feature vector, creating 

a more information-rich encoding than either network could provide independently. This fused representation 

strengthens the model’s discriminative capability by combining high-level structural cues with fine-grained texture 

details. The subsequent classification layer then produces the predicted lesion category along with its corresponding 

confidence probability. Fusion-based decision mechanisms of this kind have been widely reported to enhance 

diagnostic stability, sensitivity, and overall robustness in multi-class medical imaging tasks [30]. 

 

                                                 Fig. 3. System Architecture. 

 

V. EXPERIMENTAL SETUP 

 

The training of the model was implemented using the TensorFlow/Keras environment and executed on an NVIDIA 

GPU to achieve faster computation and efficient processing. Network weights were updated using the Adam 

optimization algorithm, accompanied by a moderated learning-rate scheduling strategy to support gradual and stable 

convergence a practice frequently recommended in deep-learning-based melanoma research [24]. Model performance 

was assessed using a diverse set of evaluation metrics, including accuracy, precision, recall, F1-score, and ROC-AUC, 

ensuring a comprehensive understanding of classification behavior across all lesion groups [22]. During training, 

validation trends were carefully observed to identify potential overfitting early and maintain steady learning 

progression. The experimental setup was constructed to reflect realistic clinical variability, enabling the network to 

generalize effectively to a wide range of dermoscopic image conditions. 

A. Data Split 

For this work, the dataset was divided into training and testing sets using an 80:20 split. This proportion is commonly 

adopted in deep-learning workflows because it provides an effective balance between giving the model enough data 

to learn from and retaining a separate set for unbiased evaluation. Allocating 80% of the images to the training phase 

ensures that the model is exposed to a broad variety of lesion appearances, helping it learn discriminative patterns 

across all melanoma and non-melanoma classes. 

The remaining 20% of the dataset was set aside exclusively for the testing phase to ensure that performance evaluation 

was conducted on images the model had never encountered during training. This separation allows the results to reflect 

true generalization ability rather than learned memorization. Given the moderate dataset size and the presence of 

multiple lesion categories within HAM10000, an 80:20 division provides a suitable balance allowing the model to learn 

from a sufficiently diverse sample pool while still retaining enough cases to reliably measure real-world predictive 

effectiveness. 

 

TABLE II 

COMMON DATA SPLIT RATIOS AND THEIR USAGE 

 

Split Ratio Usage Scenario Preferred When 

60:20:20 Large datasets Validation set required 

70:15:15 Balanced medium datasets Equal validation and test importance 

80:20 Medium datasets (e.g., HAM10000) More training data needed, stable testing 

90:10 Very large datasets Maximize training samples 

K-Fold CV Small or imbalanced datasets Need stable multi-fold evaluation 

 

 

https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 13, Issue 1, January 2026 

DOI:  10.17148/IARJSET.2026.13110 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  61 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

VI. RESULTS 

 

I. Skin-Lesion Detector Performance  

The skin lesion-validation module demonstrated strong capability in determining whether an incoming image was 

appropriate for melanoma evaluation, establishing itself as a key protective layer within the diagnostic framework. 

During testing, the detector reliably rejected inputs lacking dermoscopic contents such as regular skin photographs, 

miscellaneous objects, outdoor scenery, screenshots, and other non-clinical visuals. By blocking these irrelevant 

samples before they reached the main classifier, the system substantially lowered the risk of false alarms. This 

functionality effectively tackles a common issue highlighted in previous melanoma detection studies, where CNN 

models were prone to misclassifications due to their sensitivity to texture and color patterns rather than medically 

significant lesion structures [17], [26], [27]. Through this quality-control mechanism, only valid dermoscopic data 

proceeded to classification, resulting in cleaner feature representation, greater predictive certainty, and a more 

trustworthy diagnostic pipeline overall. 

 

II. VGG16 Results  

The VGG16 model performed especially well on texture- rich images, such as nevus (NV), benign keratosis (BKL), 

and pigmented melanoma lesions. It produced consistent and un- derstandable predictions across a number of lesion 

categories. This is consistent with the well-known ability of VGG-based networks to extract mid-level dermoscopic 

features such as surface irregularities, pigment networks, and streaks. Despite these advantages, VGG16 frequently 

confused classes with subtle visual similarity, such as basal cell carcinoma (BCC) and BKL an ambiguity frequently 

noted in dermatology lit- erature and occasionally struggled with low-contrast lesions. Its confidence levels also tended 

to decline in situations with uneven lighting. Overall, VGG16’s performance was conser- vative but accurate, which is 

consistent with the behavior seen in transfer-learning research using the VGG family. 

 

TABLE III VGG16 METRICS 

 

Class Precision Recall F1-Score 

AKIEC 0.615 0.400 0.487 

BCC 0.778 0.700 0.737 

BKL 0.385 0.500 0.435 

DF 0.750 0.600 0.667 

MEL 0.417 0.500 0.455 

NV 0.400 0.800 0.533 

VASC 1.000 0.700 0.824 

 

Fig. 4. VGG16 Model Accuracy Metrics. 
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Fig. 5. VGG16 Model Loss. 

 

 
Fig. 6. Confusion Matrix of VGG16 Model. 

 

III. DenseNet121  

Results In contrast, DenseNet121 usually produced predictions with more confidence than VGG16 due to its dense 

connectivity architecture, which promotes deeper semantic learning. It was successful in capturing structural 

abnormalities, asymmetric patterns, and color variation—a combination that is very crucial for distinguishing malignant 

melanoma from other forms. In challenging classes like as melanoma, BCC, and actinic keratosis (AKIEC), 

DenseNet121 performed better than its VGG counterpart. However, the model did occasionally show signs of 

overconfidence on low-resolution pictures, mis- classifying very small lesions when fine textural characteristics were 

lost. Despite these shortcomings, DenseNet121 remained the best stand-alone model, which is consistent with findings 

from many dermatology deep learning studies. 

  

TABLE IV 

DENSENET121 METRICS 

 

 

 

Class Precision Recall F1-Score 

AKIEC 1.000 0.183 0.309 

BCC 0.802 0.740 0.770 

BKL 0.558 0.823 0.662 

DF 0.647 0.647 0.647 

MEL 0.472 0.825 0.597 

NV 0.977 0.827 0.897 

VASC 1.000 0.952 0.976 
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Fig. 7. DenseNet121 Model Accuracy Metrics. 

 

 
Fig. 8. DenseNet121 Model Loss. 

Fig. 9. DenseNet121 Model Confusion Matrix. 

 

IV.Hybrid Classifier Performance  

The fusion model consistently outperformed the individ- ual CNN baselines, showing marked improvements in sen- 

sitivity, confidence calibration, and stability across all le- sion categories. By combining the outputs of VGG16 and 

DenseNet121, the hybrid classifier leveraged complementary feature representations that neither model could fully 

capture alone. VGG16 primarily contributed broad structural information, whereas DenseNet121 supplied detailed 

texture level discrimination. When combined, these features enabled the fused network to achieve clearer separation 

between lesion classes and to produce more reliable confidence estimations. The collaborative interaction between the 
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two models resulted in more stable prediction patterns, lower output variance, and better performance on borderline or 

visually subtle cases. These improvements mirror findings in recent hybrid deep learning research, where feature-fusion 

strategies are shown to increase diagnostic stability, minimize overfitting, and enhance decision reliability in medical 

imaging tasks [20], [25]. Overall, the hybrid model demonstrated stronger generalization ability and higher real-world 

robustness than either individual network alone. 

 

V.Comparison with Prior Works 

The hybrid system demonstrated stronger robustness under varying illumination and diverse lesion appearances, 

matching the performance improvements reported in recent multi-scale and ensemble melanoma studies [28], [29], 

[30]. 

 

VII.      DISCUSSION 

 

The integration of a lesion-validation module with the hy- brid VGG16–DenseNet121 architecture significantly 

improves system reliability by enforcing an input-quality constraint before deep processing. The inclusion of an 

upstream screening stage helps block low-quality and non-dermoscopic inputs, preventing irrelevant visual noise from 

reaching the feature extractors. This reduces unwanted activations and contributes to more stable classifier decisions an 

improvement consistent with findings from multi-stage clinical AI frameworks [21], [23]. The two CNNs complement 

each other effectively: VGG16 focuses on broader morphological structure, while DenseNet121 leverages dense 

connectivity to capture subtle texture variations and pigmentation details. When their outputs are fused, the model gains 

stronger multi-scale discrimination, mitigates network-specific bias, and maintains reliability across diverse imaging 

environments. Collectively, this hybrid design exhibits strong generalization capability and aligns with the architectural 

requirements necessary for practical and trustworthy melanoma detection in clinical workflows. 

 

VIII.       LIMITATIONS AND FUTURE SCOPE 

 

While the system performs well, it still faces limitations such as relying mainly on CNN architectures, which may miss 

long-range lesion relationships. Incorporating attention-based models or transformers could improve fine-grained 

feature un- derstanding [28], [29]. Expanding training with larger, multi- center clinical datasets would also strengthen 

generalization across diverse real-world conditions. In the future, developing lightweight versions for mobile 

deployment and adding more interpretability tools could make the system more accessible and clinically useful. 

 

IX.      CONCLUSION 

 

This study demonstrates that combining VGG16, DenseNet121, and a skin-lesion validation module creates a more 

reliable and accurate melanoma-detection system. The hybrid approach effectively reduces false predictions, improves 

confidence stability, and overcomes common issues in traditional single-model frameworks. By leveraging multi- stage 

processing and complementary deep-learning features, the proposed system aligns with modern ensemble strategies for  

dermatological analysis and shows strong potential for real-world clinical support [30]. 
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