

Soldier Health Monitoring System Using Esp 32 Microcontroller

Maruti VG¹, Pavan Kodge², YK Krupa³, Yuvaraj M⁴

Student, ECE, SJBIT, Bengaluru, India¹

Student, ECE, SJBIT, Bengaluru, India²

Student, ECE, SJBIT, Bengaluru, India³

Student, ECE, SJBIT, Bengaluru, India⁴

Abstract: This paper presents a Soldier Health Monitoring System using the ESP32 microcontroller for real-time physiological and environmental data acquisition. Sensors are used to continuously monitor vital parameters such as body temperature, heart rate, and surrounding conditions. The collected data is transmitted wirelessly to a remote monitoring station for timely analysis and alerts. The proposed system enhances soldier safety by enabling continuous health tracking and rapid response in critical situations.

Keywords: ESP32 Microcontroller, Soldier Health Monitoring, Internet of Things (IoT), Wearable Sensors, Real-Time Data Transmission.

I. INTRODUCTION

Modern battlefield environments demand continuous and reliable monitoring of soldiers' health conditions. Advances in Internet of Things (IoT) technology enable real-time acquisition and transmission of physiological data. This research focuses on a soldier health monitoring system based on the ESP32 microcontroller. The system integrates multiple sensors to track vital parameters and environmental conditions. Such monitoring improves situational awareness and supports timely medical intervention.

II. LITERATURE SURVEY

1. IoT based Healthcare Monitoring and Tracking System for Soldiers using ESP32
Authors: Sujitha V, Sudarmani Rajagopal, Aishwarya B (et al.)
Published by 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), 2022.
Summary: Presents a practical ESP32-based wearable prototype that reads vital signs, adds GPS position, and sends data to a remote console for alerts and visualization. Demonstrates end-to-end feasibility of ESP32 in soldier monitoring.
2. IoT-based Healthcare Monitoring System for War Soldiers
Author: A. Gondalia (and coauthors)
Published by: Procedia / ScienceDirect (conference/journal proceedings), 2018.
Summary: Describes a wearable sensor network for tracking soldier location and physiological data (heart rate, temperature), with real-time transmission to base station — an early validated prototype showing clear application to battlefield monitoring.
Real-Time Health Monitoring and Tracking System of Soldiers Using IoT
Authors: (Collective authors; open access article)
Published by: Neuro Quantology (open access).
Summary: Surveys wearable sensor combos (HR, Temp, SpO₂) with GSM/GPS links and demonstrates a field-oriented prototype for continuous monitoring and base-station alerts. Why it supports your project: Reinforces design choices: body sensors + comms modules (GSM/GPS) with MCU gateway (ESP32 or similar).
3. Health Monitoring and the Tracking Systems for Soldiers (Survey & Prototype)
Authors: IJARIIT / multiple student authors
Published by: IJARIIT / institutional report (2024).
Summary: Presents survey of soldier monitoring systems and offers an ESP32-based prototype; discusses battery life, sensor calibration and communication reliability.

Why it supports your project: Highlights practical design trade-offs (power, calibration) when using ESP32 in wearables.

4. A Wearable Device-Based IoT for ECG and Heart Rate Monitoring Using ESP32

Authors: (K. Mounika et al.)

Published by: Modelling, Measurement & Control B (MMEP) / IETA publication.

Summary: Implements continuous ECG and HR capture using ESP32 as the Wi-Fi gateway; details preprocessing and cloud upload. Demonstrates ESP32 handling streaming biomedical data.

Why it supports your project: Shows ESP32 can process and transmit time-sensitive biomedical signals (ECG/HR).

5. Wireless Data Transferring of Soldier Health Monitoring and Tracking System

Authors: (IJERT conference paper)

Published by: IJERT (2023).

Summary: Describes installation of sensors on a vest, GPS/ESP32-CAM for location, and cloud storage for health logs — includes implementation notes and data transmission strategy.

Why it supports your project: Provides a reproducible pattern for placing sensors and using ESP32 for both sensing and data transport.

6. Real-Time Soldier Health Monitoring System (SSRN preprint)

Authors: (RSHMS group / preprint authors)

Published by: SSRN (preprint).

Summary: Proposes RSHMS using ESP32 for data collection, local thresholding and remote reporting. discusses security and QoS considerations for battlefield use.

Why it supports your project: Addresses communication security and QoS design when using ESP32 in tactical settings.

7. IoT Based Soldier Monitoring System

Authors: (Pramana Research / conference project)

Published by: Pramana Research (project PDF).

Summary: Details WBASN (wireless body area sensor network) approach, GPS tracking, and the role of a microcontroller gateway; emphasizes search & rescue benefits.

Why it supports your project: Reinforces WBASN + gateway design that ESP32 can implement.

8. An Innovative Wearable Health Monitoring System Using ESP32

Authors: (Sathyabama University student/project report)

Published by: Sathyabama institutional report / project archive (2023).

Summary: Demonstrates a wearable with HR, SpO₂ and temperature sensors communicating via ESP32 to a cloud dashboard; discusses user interface and data visualization.

Why it supports your project: Shows practical UI/dashboard patterns and sensor choices for ESP32 systems.

9. IoT Driven Healthcare System for Remote Monitoring of Troops

Authors: (IJARSCT authors / academic paper)

Published by: IJARSCT (conference/journal).

Summary: Proposes troop health monitoring with GPS and ESP32 nodes forwarding data to command centres cover network topology and alert thresholds.

Why it supports your project: Confirms the network and alerting model suitable for ESP32-based deployments.

10. Cost-Effective IoT-Based Real-Time Vital Sign Monitoring (ESP32 + MAX30102)

Authors: (Telehealth & Medicine Today article / implementation note)

Published by: Telehealth & Medicine Today (implementation article).

Summary: Demonstrates low-cost, accurate pulse/SpO₂ monitoring using MAX30102 with ESP32 DevKit V1 and cloud logging — includes power considerations and sampling strategies.

Why it supports your project: Confirms sensor choices (MAX30102) and ESP32 compatibility for vital-sign acquisition and low-power operation.

11. ESP32 Datasheet & Technical Reference (Hardware capability)

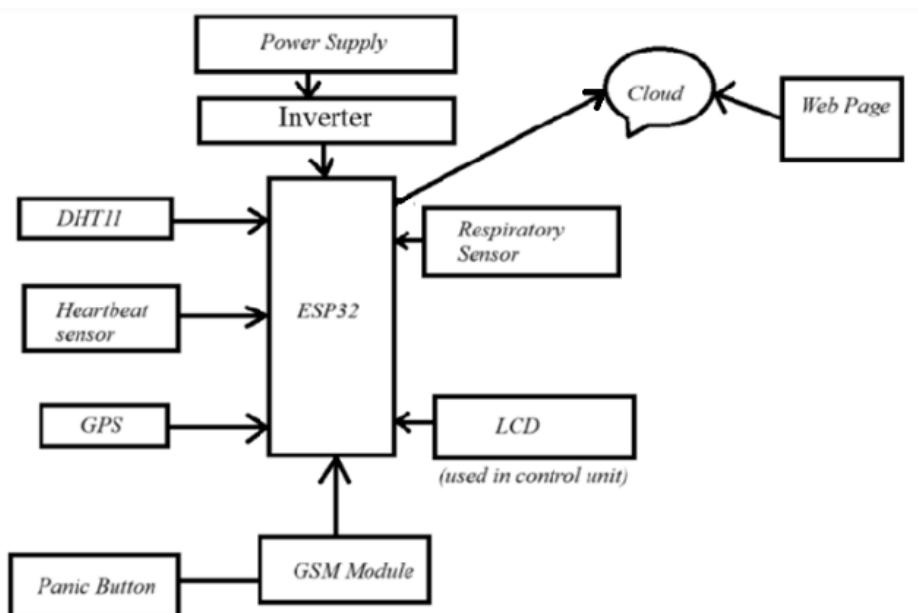
Authors: Espressif Systems (official)

Published by: Espressif documentation portal (Datasheet & TRM).

Summary: Official datasheets and technical manuals list ESP32 features — integrated Wi-Fi/Bluetooth, ADCs, low-power modes, multiple comms interfaces and crypto accelerators — which make it suitable as a wearable MCU gateway.

Why it supports your project: Hardware documentation verifies the ESP32's peripheral and power-management features required for soldier wearable nodes.

III. METHODOLOGY


The proposed soldier health monitoring system is designed using the ESP32 microcontroller as the central processing unit. Wearable sensors are interfaced to measure vital parameters such as body temperature, heart rate, and environmental conditions. The ESP32 acquires sensor data at predefined intervals and performs basic preprocessing and threshold analysis. Location information is obtained using a GPS module to enable real-time tracking of the soldier. The processed data is transmitted wirelessly using Wi-Fi/GSM to a remote monitoring station or cloud server. Secure communication protocols are employed to ensure data integrity and confidentiality.

IV. SYSTEM DESIGN

Block Diagram Overview:

The proposed soldier health monitoring system is organized into the following main functional units:

1. **Power supply:** Provides regulated power to the entire system through a power supply and inverter to ensure stable operation of the ESP32 and peripherals.
2. **Sensing Unit:** Consists of physiological and environmental sensors such as the temperature sensor, heartbeat sensor, to continuously monitor the soldier's health parameters.
3. **Processing and Control Unit:** The ESP32 microcontroller acts as the core unit, collecting sensor data, processing it, and controlling communication and display operations.
4. **Communication Unit:** Includes the GSM module and cloud interface to transmit health and location data to a remote monitoring centre and web page in real time.
5. **Location Tracking Unit:** The GPS module provides real-time positional information of the soldier for tracking and emergency response.
6. **Alert and Interface Unit:** The panic button allows manual emergency alerts, while the LCD displays vital information locally for immediate reference.

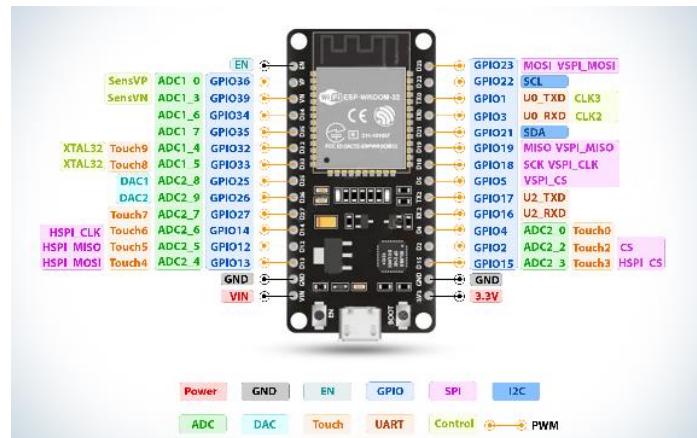

OUTPUT DEVICES

Fig 1.1 Block Diagram

V. HARDWARE REQUIREMENTS

• ESP32 Microcontroller

The ESP32 serves as the central control unit, receiving crowd density data via serial communication and controlling all peripheral components.

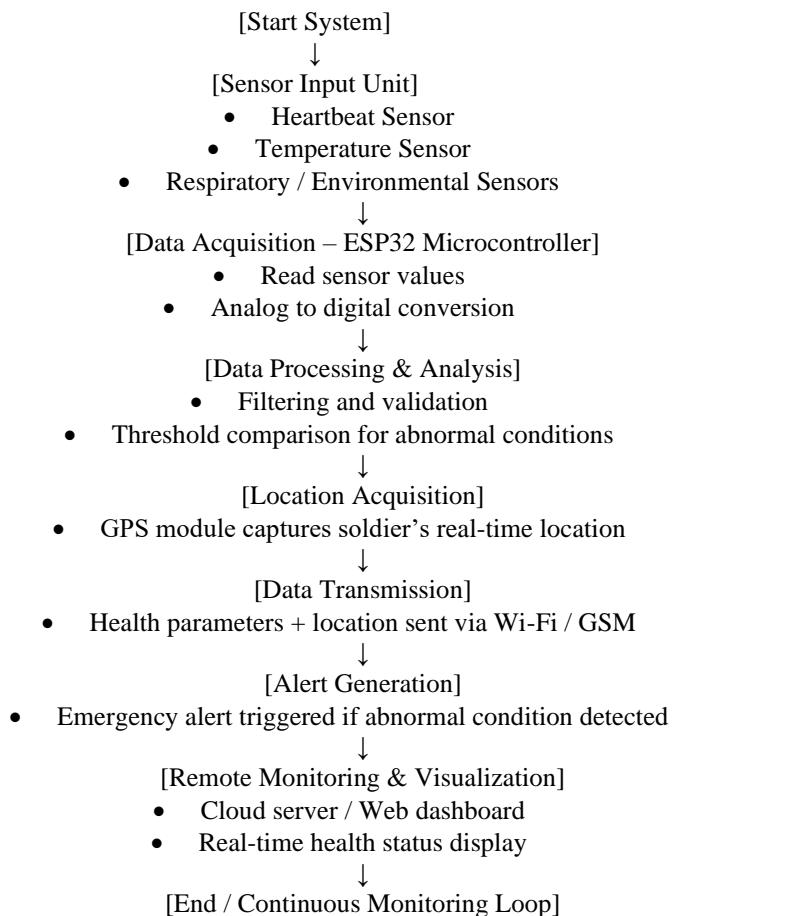
Fg 1.2 ESP32

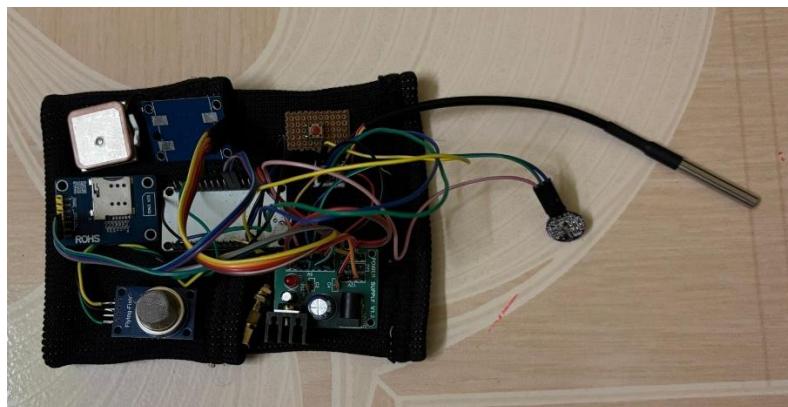
- **3. MAX30100 / MAX30102 Pulse Oximeter Sensor**
 - This sensor measures heart rate and blood oxygen (SpO_2) levels of the soldier. It plays a vital role in detecting health abnormalities such as fatigue or oxygen deficiency. The sensor communicates with ESP32 using the I²C protocol.
- **4. Gas Sensor (MQ Series)**
 - The gas sensor detects the presence of harmful or toxic gases in the surrounding environment. It helps in identifying hazardous battlefield conditions and alerting the control unit. This enhances soldier safety in chemical or polluted zones.
- **5. GPS Module**
 - The GPS module provides real-time geographical location of the soldier. It helps the military control center track soldier movement and position during operations. Location data is transmitted along with health parameters for better situational awareness.
- **6. GSM Module (SIM900A)**
 - The GSM module enables long-distance communication by sending sensor data to a remote server or control room. It supports SMS and GPRS for data transmission in areas without Wi-Fi coverage. This ensures continuous monitoring even in remote locations.
- **7. Power Supply / Battery Unit**
 - A rechargeable battery supplies power to the entire system. It is designed to provide stable voltage for uninterrupted operation of sensors and communication modules. Efficient power management is essential for prolonged field deployment.
- **8. LCD Display (Optional)**
 - The LCD display is used to show real-time sensor readings locally. It allows the soldier to monitor basic health parameters directly. This provides immediate feedback without requiring remote access.

VI. SOFTWARE REQUIREMENTS

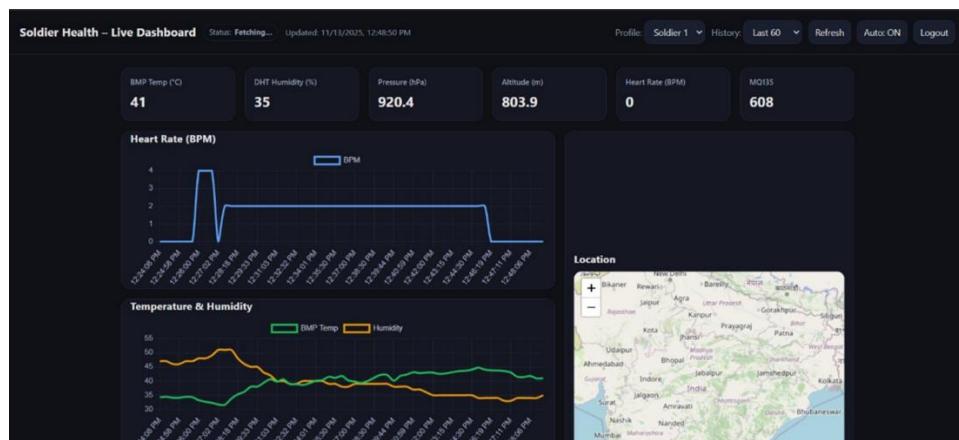
Software Used in Soldier Health Monitoring System (ESP32 MC)

1. **Arduino IDE** – Used to write, compile, and upload embedded C/C++ code to the ESP32 microcontroller.
2. **ESP32 Board Support Package (BSP)** – Provides necessary libraries, drivers, and toolchains for ESP32 hardware functionality.
3. **IoT Cloud Platform (ThingSpeak / Firebase / Blynk)** – Used for real-time data storage, visualization, and remote monitoring of soldier health parameters.
4. **Embedded C/C++** – Programming language used for sensor interfacing, data processing, and communication control.
5. **Web Application Software (HTML, CSS, JavaScript)** – Used to design a web interface for displaying health data and alerts at the monitoring station.


VII. DESIGN FLOW


The overall workflow includes:

Design Flow of Soldier Health Monitoring System (ESP32 MC)


- 1. System Initialization:**
Initialize the ESP32 microcontroller, sensors, GPS, GSM module, and communication interfaces.
- 2. Data Acquisition:**
Continuously collect physiological data from sensors such as heartbeat, temperature, and respiratory sensors.
- 3. Data Processing:**
Process and analyse the acquired data in the ESP32, including threshold checking for abnormal conditions.
- 4. Data Transmission:**
Transmit processed health and location data to the cloud or control station using Wi-Fi/GSM communication.
- 5. Alert and Monitoring:**
Generate alerts in emergency situations and display real-time data on the web interface or LCD for monitoring.

Flow chart

VIII. PROJECT MODEL**Fig 1.3 Model****IX. RESULTS AND DISCUSSION**

The developed soldier health monitoring system successfully measures and transmits vital health parameters in real time using the ESP32 microcontroller. Sensor data is accurately collected and processed with minimal delay. The system reliably sends health and location information to the remote monitoring unit through wireless communication. Emergency alerts are generated promptly when abnormal conditions are detected. The results demonstrate improved situational awareness and effective health supervision of soldiers in field environments.

Fig 1.4 soldier monitoring**X. ADVANTAGES**

The system provides real-time monitoring of soldiers' health parameters, enabling early detection of critical conditions. It enhances soldier safety by generating instant alerts during emergencies. The use of ESP32 ensures low power consumption and cost-effective implementation. Wireless data transmission allows remote monitoring from command centres. The compact and wearable design makes the system suitable for battlefield deployment.

XI. APPLICATIONS

1. Real-time health monitoring of soldiers during battlefield operations.
2. Remote medical supervision from military control and command centres.
3. Emergency alert and rescue support in critical health situations.
4. Monitoring soldiers during training exercises and high-risk missions.
5. Health tracking of personnel in extreme environments such as high-altitude or border areas.

XII. CONCLUSION

The soldier health monitoring system using the ESP32 microcontroller provides an effective solution for real-time health surveillance in battlefield conditions. The integration of wearable sensors and wireless communication ensures continuous monitoring of vital parameters. The system enables timely alerts and quick medical response during emergencies. Its low power consumption and compact design make it suitable for long-duration field operations. Overall, the proposed system enhances soldier safety and operational efficiency.

ACKNOWLEDGMENT

The authors express their sincere gratitude to the institution and department for providing the necessary facilities to carry out this project. Special thanks are extended to the project guide for continuous guidance and valuable suggestions. The authors also acknowledge the support of faculty members and laboratory staff during the implementation phase. Finally, appreciation is given to all those who directly or indirectly contributed to the successful completion of this work.

REFERENCES

- [1]. S. K. Saidu Babu, G. Ravi Kumar, and R. Begum, "Soldier healthcare parameters monitoring system using Internet of Things," *International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET)*, 2023.
- [2]. A. V. Patil, V. P. Doiphode, and S. S. Bhosle, "Soldier health monitoring and tracking system using IoT and AES," *Journal of Emerging Technologies and Innovative Research (JETIR)*, 2021.
- [3]. P. Kulkarni and T. Kulkarni, "Secure health monitoring of soldiers with tracking system using IoT," *International Journal of Trend in Scientific Research and Development (IJTSRD)*, 2019.
- [4]. Espressif Systems, *ESP32 Series Datasheet*, Espressif Systems Inc., Technical Documentation, 2022.
- [5]. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet of Things: A survey on enabling technologies, protocols, and applications," *IEEE Communications Surveys & Tutorials*, 2015.
- [6]. S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. S. Kwak, "The Internet of Things for health care: A comprehensive survey," *IEEE Access*, 2015.
- [7]. A. Pantelopoulos and N. G. Bourbakis, "A survey on wearable sensor-based systems for health monitoring," *IEEE Transactions on Systems, Man, and Cybernetics*, 2010.
- [8]. S. Seneviratne, Y. Hu, T. Nguyen, G. Lan, S. Khalifa, K. Thilakarathna, M. Hassan, and A. Seneviratne, "A survey of wearable devices and challenges," *IEEE Communications Surveys & Tutorials*, 2017.
- [9]. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A vision, architectural elements, and future directions," *Future Generation Computer Systems*, Elsevier, 2013.
- [10]. T. Rault, A. Bouabdallah, and Y. Challal, "Energy efficiency in wireless sensor networks: A top-down survey," *Computer Networks*, Elsevier, 2014.
- [11]. TinyGPS++ Library Authors, *TinyGPS++: A C++ Library for Parsing NMEA GPS Data*, Open-Source Embedded Systems Documentation, 2021.
- [12]. Adafruit Industries, *DHT11 Temperature and Humidity Sensor Datasheet*, Adafruit Learning System, 2020.
- [13]. Maxim Integrated, *MAX30100/MAX30102 Pulse Oximeter and Heart-Rate Sensor IC Datasheet*, Maxim Integrated Products, 2019.
- [14]. MathWorks, *ThingSpeak: IoT Analytics Platform for Embedded Systems*, MathWorks Documentation, 2022.
- [15]. SIMCom Wireless Solutions, *SIM900A GSM/GPRS Module Hardware Design Guide*, SIMCom Technical Manual, 2018.