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Abstract: Rapid, reliable detection of forest fires is critical to minimize ecological, economic, and human losses. This 

paper presents a practical AI-driven system for early forest-fire detection trained on the D-Fire dataset and deployed 

end-to-end with a Flask web service and HTML/CSS/JS front-end. The proposed pipeline detects both fire and smoke in 

single images, videos, and live streams, triggers configurable alerts, and exposes REST endpoints for easy integration. 

We report model and system design choices, training regimen, evaluation results, and field-deployment considerations. 

The solution supports live IP-camera feeds, user image/video upload, and dashboards for incident review. A modular 

microservice design enables scaling, audit logging, and integration with emergency notification channels. 

 

Keywords: Forest fire detection, smoke detection, deep learning, YOLO, Flask, real-time inference, edge deployment, 

early warning. 

 

I. INTRODUCTION 

 

Wildfires are intensifying in frequency and magnitude, exacerbated by climate and land-use dynamics. Early, automated 

detection; especially of incipient smoke is essential to reduce response times. Traditional approaches (watchtowers, 

human patrols, point gas/heat sensors, and satellite-only monitoring) face limited coverage, latency, or high false 

alarms. Vision-based AI detectors close this gap by continuously analyzing camera feeds with learned spatio-temporal 

patterns for flames and smoke. 

 

This work contributes:  

(i) a trained object-detection model for fire and smoke on the D-Fire dataset; 

(ii) an end-to-end web system with live feed, upload, and alerting;  

(iii) a reproducible training recipe and deployment blueprint; and  

(iv) quantitative evaluation aligned to practical constraints (latency, compute, bandwidth, lighting, camera noise). 

 

II. MOTIVATION 

 

Manual surveillance struggles with vast forested areas, night conditions, haze/cloud confusions, and operator fatigue. 

Fixed thresholding rules (e.g., color or motion alone) often underperform under varying illumination and backgrounds. 

Modern detectors learn discriminative features jointly for fire and smoke across diverse scenes, enabling robust early 

warnings and reduced false positives. Operationally, an integrated web-based solution lowers the barrier to adoption by 

forest agencies and communities: it can run in the cloud, on a control-room server, or on rugged edge boxes near 

towers. 

 

III. LITERATURE SURVEY 

 

Prior studies span terrestrial, aerial, and satellite sensing, each with distinct coverage, cost, and latency profiles. 

Terrestrial CCTV towers provide high spatial detail but limited range; UAVs improve vantage flexibility and rapid 

redeployment at the expense of flight time and maintenance; satellites (e.g., polar-orbiting and geostationary platforms) 

offer wide-area coverage with revisit delays and coarser spatial resolution. A recurring challenge across modalities is 

controlling false alarms under changing illumination and weather (sun glint, fog, low clouds, dust, haze), as well as 

camera artifacts (compression noise, lens flare) and scene dynamics (moving foliage, shadows). 
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Image-based methods have evolved in three waves. First came rule-based cues using color and motion in 

RGB/YCbCr/HSV, together with background subtraction and simple temporal heuristics to capture the characteristic 

flicker and expansion of flames. A second wave used hand-crafted spatiotemporal descriptors—optical-flow 

turbulence, wavelet/LBP-TOP texture, and edge statistics—paired with classical classifiers (SVM/Random Forest). The 

current wave is dominated by deep learning, where single-stage detectors (YOLO family, SSD, EfficientDet) and two-

stage variants (Faster R-CNN) learn discriminative features that generalize across backgrounds and lighting, enabling 

real-time performance on edge GPUs/CPUs. 

 

The literature consistently highlights three practical lessons: [1]detect smoke as an early surrogate before flames 

become visible; [2]combine smoke + flame hypotheses in a single pipeline to improve robustness over different fire 

phases; and [1], [2]leverage multimodal sensing—especially optical + IR/LWIR—to disambiguate smoke from 

fog/clouds and to improve night performance. Beyond sensing, robust systems apply temporal consistency (track-level 

confirmation across frames), region priors (sky/horizon masks, exclusion of static hotspots), and hard-negative mining to 

suppress common confounders such as clouds, chimneys, and bright reflections. Domain-shift issues between training 

data and field deployments are typically mitigated with augmentation (color jitter, haze simulation, mosaic), calibration 

using diverse “none” negatives, and periodic model refresh via active learning.[3] 

 

We follow these insights by jointly detecting smoke and flame, enforcing light-weight temporal smoothing during 

inference, and validating on diverse negatives that reflect real operating conditions. 

 

IV. DATASET 

 

Source: D-Fire (DFireDataset). The dataset contains >21K images across four categories (only smoke, only fire, both, 

none) with YOLO-format labels. Two classes: fire, and smoke are annotated via bounding boxes. 

 

Splits: We use the provided train/val/test stratified splits. Non-fire (“none”) images are retained to strengthen negative-

class calibration. 

 

Preprocessing: Images resized to 640×640 with letterbox padding; per-image normalization; automatic corrupt-JPEG 

recovery where applicable. Optional augmentations include HSV jitter, horizontal flip, mosaic, copy-paste, and 

random perspective. 

 

Table 1. Dataset summary 

 

Category Images Classes (bboxes) 

Only fire 1,164 Fire bboxes contribute to total 

Only smoke 5,867 Smoke bboxes contribute to total 

Fire + smoke 4,658 Both classes present 

None 9,838 — 

Totals 21,527 Fire: 14,692, Smoke: 11,865 

 

V. METHODOLOGY 

 

A. Detection Model 

We adopt a one-stage detector (YOLO-family) configured for two classes: fire, smoke. Input size is 640². We enable 

anchor-free heads, distribution-focal loss, and IoU-aware assignment as supported by the chosen release. 

 

Training recipe (from notebook): 

• Backbone/Head: lightweight YOLO variant suitable for real-time. 

• Epochs: 100; batch: 64; imgsz: 640; patience: 20 (early stopping). 

• LR schedule: lr0=1e-4, lrf=1e-5, cosine LR enabled; optimizer: default; cos_lr: True. 

• Augmentations: flip 0.5, HSV, mosaic; erasing 0.4 (if available). 

• Best checkpoint: selected by validation mAP. 

 

B. Inference & Post-processing 

• Confidence threshold (0.25); NMS with class-aware suppression. 

• Temporal smoothing over successive frames: a short queue (8–12 frames) to enforce persistence on 

https://iarjset.com/


IARJSET 

International Advanced Research Journal in Science, Engineering and Technology 

Impact Factor 8.311Peer-reviewed & Refereed journalVol. 13, Issue 1, January 2026 

DOI:  10.17148/IARJSET.2026.13119 

© IARJSET                  This work is licensed under a Creative Commons Attribution 4.0 International License                  112 

ISSN (O) 2393-8021, ISSN (P) 2394-1588 
 

smoke; lower persistence for flames due to flicker dynamics. 

• Region filters: optional masking for static hot sources and horizon/sky exclusion on specific cameras. 

 

C. System Architecture (Deployment) 

A modular web system supports live stream, file upload, and alerts. Services 

1. Inference Service (Python): loads the ONNX/pt model once; exposes gRPC/REST /infer with JSON output 

(boxes, classes, confidences). 

2. Web/API Gateway (Flask): user-facing endpoints, auth, rate limits; routes frames to inference; serves 

dashboards. 

3. Stream Worker: subscribes to RTSP/HTTP camera feeds; decodes frames (FFmpeg), batches to inference; 

overlays boxes; publishes WebRTC/HLS tiles. 

4. Alerting: threshold + persistence rules; notifies via email/SMS/webhooks; deduplicates events. 

5. Storage: incident clips (MP4), key frames (JPEG), and JSON metadata in object store; relational DB for 

audit trails. 

 

Front-end (HTML/CSS/JS) 

Live player with bounding-box overlays; camera chooser; confidence/threshold slider; upload page (image/video) for 

instant predictions; incidents table with acknowledge/resolve actions. 

 

Security & Ops 

Flask behind uvicorn, env for secrets, structured logging, health endpoints, Prometheus metrics. 

 

D. Alert Logic 

• Smoke first: if smoke persistence ≥ 10 frames in an ROI → Early Warning. 

• Flame now: any high-confidence flame detection triggers Immediate Alert. 

• Cooldown windows avoid alert storms; dedup by camera + region. 

 

VI. EXPERIMENTS AND RESULTS 

 

Validation metrics (from the trained notebook) 

 

Class P R mAP@0.5 mAP@0.5:0.95 

Fire 0.943 0.914 0.963 0.732 

Smoke 0.871 0.794 0.883 0.567 

Mean (all) 0.907 0.854 0.923 0.650 

 

Latency (per 640² image): preprocess 0.1 ms, inference 2.9 ms, post-process 1.2 ms (≈ 4.2 ms total per image). 

 

Qualitative observations: early smoke is detected before visible flames in low-contrast scenes; temporal smoothing 

reduces flicker false positives. Hard cases include fog/cloud layers and distant thin plumes; per-camera region masks 

and horizon exclusion help. 

 

VII. DISCUSSION 

 

Generalization benefits from diverse “none” negatives, geographically varied smoke/plume textures, and temporal 

consistency checks. For field rollout, pair the visual detector with situational layers (wind, humidity, historical 

hotspots) and consider IR co-cameras where feasible. Privacy is addressed by avoiding face/plate retention and 

obfuscating non-forest scenes. 

 

VIII.      CONCLUSION AND FUTURE WORK 

 

We built and deployed a practical, end-to-end AI system for forest-fire detection that operates in real time across 

images, videos, and live streams. The solution covers the full pipeline—from dataset preparation and model training 

(fire/smoke) to a Flask-based API, web UI, alerting logic, and storage/audit trails—so that agencies can plug cameras in 

and start receiving actionable notifications. In evaluations, the detector achieves strong precision/recall with efficient 

latency (≈4.2 ms per 640×640 frame on GPU), and the system-level design (temporal smoothing, region masking, 

cooldown/dedup) helps suppress false alarms in difficult scenes such as fog, haze, and fast illumination changes. 
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Operationally, the architecture is simple to run (Dockerized services behind Nginx/Gunicorn), easy to monitor (health 

checks, logs, metrics), and secure by default (HTTPS, auth tokens, CORS control), making it suitable for control rooms 

or edge gateways. 

 

Beyond raw accuracy, a key outcome is reliability: the alert pipeline emphasizes persistence checks, human 

acknowledgment, and clear incident records (timestamps, camera IDs, snapshots/clips). This improves trust, reduces 

alert fatigue, and creates a feedback loop for data curation. The system is also extensible: it supports multiple camera 

types, batch or streaming inference, and clean REST endpoints so that dispatch centers or external dashboards can 

subscribe to events without changing field hardware. 

 

Future work will focus on four directions and related extensions: 

1. Multi-sensor fusion: Combine visible RGB with thermal/LWIR (and, where feasible, NIR) to better distinguish 

smoke from fog/clouds, improve night performance, and handle back-lit scenes. 

2. Active learning & continual improvement: Mine hard negatives/positives from the field, route them for quick 

review, and auto-refresh the model on a rolling basis without service disruption. 

3. Geolocation & triangulation: Use multi-camera geometry and simple range/bearing estimates to localize events on 

a map and prioritize dispatch. Integrate weather and terrain layers to provide operators with wind-aware spread 

context. 

4. Lightweight edge AI: Deploy INT8/PTQ-compressed models or distilled backbones on low-power devices; 

add graceful degradation (adaptive frame-rate, dynamic resolution) for constrained links and solar-powered setups. 

5. Uncertainty & governance: Calibrate confidence scores, expose clear alert states (warning vs immediate), and 

keep humans in the loop for edge cases—improving accountability and auditability. 

In short, the system is ready to use today and designed to keep learning from real-world feedback. By fusing 

additional sensors, adding localization, and hardening the edge deployment, we can shorten detection-to-response time 

further and make early-stage fires easier to contain. 
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