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L. INTRODUCTION

Many dynamic systems and many functional environments, such as behavioural, biologial, and chemical, face various
forms of uncertainties. Zadeh [17] introduced the fuzzy set in 1965 to deal with uncertainties in a variety of real-world
applications. Pawlak [15] (1982, 1991) introduced the rough set as a methodology for dealing with imperfect information,
especially vague concepts. Many scholars and researchers [2][14] from around the world are focused in rough set theory.
The rough set approach is essential in artificial intelligence and cognitive sciences, specifically in learning algorithms,
data mining, and information retrieval.

As a generalisation of the fuzzy set, Atanassov [1] proposed the intuitionistic fuzzy set on a universe in 1983.
Smarandache [3][4] [5] develops the notion of neutrosophic set as a more specific platform that develops the notions of
classic set, intuitionistic fuzzy set, and interval valued intuitionistic fuzzy set.

The ideas of BCK-algebras and BCI-algebras were established by Imai and Iséki [6][7] in 1966 to characterise BCK/BCI-
logics, which are components of the propositional calculus containing implication. The class of BCK-algebras is
considered to be a proper subclass of the class of BCI-algebras. In BCK-algebra, Y. B. Jun (along with Hong, Kim, Meng,
Roh, et.al) [8][9][10][11] studied the fuzzification of ideals and sub-algebras.

In this article, we establish the idea of sub-algebras and ideals in BCK - algebras as a rough neutrosophic and study some
of their properties.

1L PRELIMINARIES

~ ~
Let 3 denote the BCK-algebra throughout this session and CR denote the congruence relation on .

Definition 2.1 [12]: An algebra (X,*,0) of type (2,0) is called a BCK-algebra if it satisfies the following axioms:
(@) ((x*y)*(x*z))*(z*y)=0,

(i) (x* (0 ) ¥y =0,

(i) x*x =0,

(iv) x*y=0 and y*x=0 imply that x =y

(v) 0%x=0 forall x,y,ze X.

Definition 2.2 [12]: A partial ordering " <" on X can be defined by x < y if and only if x* y =0.
Definition 2.3 [12]: In any BCK-algebra X the following holds:

(i) x*0=x

(i) x*y<x

(i) (x*y)*z=(x*z)*y
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(iv) (x#z)*(y*z)<x%*y

(v) X (x*(x* y)) = x*y
(vi) x<y=>x*z<y*z and z*y<z*x, forall x,y,z€ X.

Definition 2.4 [12]: A subset S of a BCK-algebra X is called a subalgebra of X if x * y € § wheneverx, y € S.
Definition 2.5 [12]: A non-empty subset I of a BCK-algebra X is called an ideal of X if it satisfies:
(i) 0el,

(i) x*yel and y el imply x el
Proposition 3.6 [12]: In a BCK-algebra X, the following holds, for all x, y,z € X.

O((x*z)*z)*(y*z) < (x*y)*z,

(@) (xx z) * (x* (x % 2)) = (x* 2) * 2,

(@D)(x# (y* (y 2 x))) * (y* (xk (y (¥ *x)))) S x% .
. ROUGH NEUTROSOPHIC IDEAL OF BCK-ALGEBRA.

In this session Rough neutrosophic sub algebra (RNSA), Rough neutrosophic ideal(RNI) of BCK-algebra( J ) is
introduced and related theorems and properties were discussed.

Definition 3.1: A Neutrosophic sub algebra (NSA) is said to be Rough neutrosophic sub algebra (RNSA) of J if it is
both lower RNSA and upper RNSA of 3.

Definition 3.2: A NSA is said to be lower(upper) RNSA of J if its lower(upper) approximation is also an RNSA of

5.
Proposition 3.3: Every CR lower NSA of J satisfies,

Cp (%,)(0)2 C, (5,)(@): Cy (1) (0) < C, (1) (20): Gy (1, ) (0) < Cy (¢, ) (@)

Yaed.

Proof: We have forany f € 3,
Co(k)O= A Calx)( %))

> A min{ Cp(x,(f)), Co (i, (SN}

Cgrgel Sl

= i Ny, min{ Cy (i, (), Co (i, (f D))
=min{ o Gk () A Cali (1)

= Co(k,(f)
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%(Ki)(0)= v CR(Ki)(f*f)

eegel 1 l;
< v max{C (15, () G (i, (/D)
= ey, Mt Cp (1, (), Gy (5, (1))}
=max{ v Cy(k,(f), v Cpl, (SN}
=G (x,(/))

%("f')(o):g*ge&m Ce(, ) 1)
S ey, mad G, (s G, ()]

= | max{ Cy (i, (D), Co (6, (F))}

gelfls ge

- max{ge[vfh Calie, (/s Calie, (1)}
Cal, (1)

Hence proved.

Proposition 3.4:
Every CR upper NSA of J satisfies,

Co(K)(0) < Co (1) (1) Cy (1) (0) 2 Cp () () Coe (5, ) (0) 2 C () ()
Vf ed.

Proof: Proof: We have forany f €3,
Co()(0)= v Cu(x *
()O= v Cols) (1)

> max{C (K(f))C(K(f))}

g*gE[f *f e

v max{C (<, (f))s C (x, (N}

gE[f] g€l f e

=max{ v Cu(s(/). v, Colr ()}

= Co(x,(f)
CR(Ki)(O): A CR(Ki)(f*f)

g*gel f*f1:

> mln{C (=, (), Cp (=, (f)}

é*éE[f*

= D ming Cy(x,(f)), Cr (5, (f))}

=minf _p Cl(x, D 4, Coli, ()}
= Co(x,(f))
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Co(x,) = A Cox,)(f*S)

g*gel f*[ s

< mm{C (i, (/) Cr(ic, (1))}

g*gE[f

= , mm{C CRODNACHII)

gelfle, ge

= mm{geﬁ,,]b CR (Kf 09)) gE{}]b CR (K/' )
= C(x,(f))

Hence proved.

Definition 3.5: A Neutrosophic ideal (NI) is said to be Rough neutrosophic ideal (RNI) of J if it is both lower NI and
upper NI of J .

Definition 3.6: A NI is said to be lower (upper) RNI of J if its lower (upper) approximation is also an NI of 3.
Lemma 3.7: Let K bea C, lower RNI of J.If f* g </, holdson J then,

Vf,g,he3

Cy (%) () 2 min{C, (x,(2)),Cp (%, (1))}

Cr (%) () < max{Cy (x,(2)), Cp (K, (M)}

Ca (5, ) () < max{Cy(x,(8)). Cy (x, (M)}

Proof:

Given f*g<h. Then (f*g)*h=0,Vf,g,he .

Co(K) ()= A Cylr) (@)= min{C, (x,(p*q)),C (K,(@))}

N
q¢elf 15 prrqel f 154 h]5.q€l /)5

> A min{min{C, (x,((p*@)* 1)), Co (M)} C (K@)}

(prq)*re((fls*[h)s)* g5 .relgls.q<lh]s

= {min{Cy (x,(0)), Ce (5, (")}, Gy (x,(9))}

re[gls, qE[h]

—mln{ /\ C (K‘ (r))} /\ C (K (q))} mzn{C (K' (g)) C_(K(h))
Ce()(N= v ( ) (@)= max{C, (x,(p*9)),Cy (,(9))}

\V4
FEVAR p*qel f1s¥ 5.9l f 15

< v max{max{C (K (p=* q)*r)) (K (”))} C, (Ki(Q))}

(prq)srelf s ) gls relgls qelils

= {max{C, (,(0)),C; (x,(M)}, Cx (x.(9))}

re[gls, qE[h]

=max{ v Co(K () v Cy (K@) = maxiCy (k) Ca (,(1))
( )(f)_ 41 ( )(Q)_ prael A el max{&(Kf(p*q)) ( f(q))
< v max{max{Cy (1, ((p*q)*1)).Cy (x, (M)}, Cy (k@)

(prq)sre((f 15 hls)Hgls relgls.q¢€lh]s

= {max{Cy (1,(0)),Cp (1, (M)}, Co (5, (@) )}

re{g]~ qelhls

=max{ v ol () v Co((@)r = maxiCy (1,(2))1, Ca (5, (1)

Hence proved.
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Lemma 3.8: Let K bea C,, upper RNIof J.If /' * g </, holdson J then,

Vf,g,heJ

Co(%,)(f) 2 max{C, (x,(8)), Cy (e, (1))}

Co (%) () S min{C, (x,(2)). Cp (,())}

Co () (1) S min{C, (x,(8)). Co (1, (M)}

Proof:

Given f*g<h. Then (f*g)*h=0,Vf,g,he .

Ce(k)N= v Ce(x)@= ~  maxiCy(x(p*q)).Cp(K (@)}

p*qel fls¥h]5.q€l f 15

< et s o, Maxma{Cy (1,((0*9)* 1)), Cy (1,0))1 G (5, (@)

= o maxiCe (5,(0)), Ce (x, (M)} Cy (@)

=maxi v Cy(K,( v, C(K, (@) =max(Cy (k)1 C (i, (h)
Co()N= A Clk)= A min{Cy(x(p*9)),Cy(k(9))}

> it e o, Mmin{Cy (16, ((p* @)% 1)), Cy (16,0} C (@)

= s it Cok, (1,0). o (5,0} G ()

=min{ . Cp(kM) A Cyli@)i = mintCy (x,())} Cy (5,0
C_R(Kf)m=q69]37(xf)<q>=p*qem Doy, MG (K (2 )).C (1, (@)

Z egprett et e retere getn, TG Cu(k, (p*9) 1)), Cy (i, ()1, Ce (5, (@)

= oA o mintCe (1, (0).C (1, (). Gy (1, (@)

re[gls.g

=min{ p Cy(i,M)is A Ca(x, (@) =miniCy (1, ()1 Co [, (W)

Hence proved.

Lemma 3.9: Let K bea Cp lower RNIof J. If, f'<g in J then

Co (%) ()2 C(x,(2)): Co (1) () < Ca (k(8)); Ca (1, ) () < Ci (1, ().

Proof:

Let f<g in J, then f*g=0

Colx)Nz o mindC(x(p9). Cy (K ()} = min{Cy (x,0)), A Co(x (@)} = Cp(K,(2))
Ce(x) (N < v max{&(’f,-(p*@),ﬂ(’ﬁ(g))}=max{§(’€-(0)),q€é]j%(K,-(Q))}:%(Kf(g))

r*qel f15*gls.q€lg]s
SCAIGE

Hence proved.

A (o (x,(P*9)).Ca (1, (8) )} = maxiC, (x f<0>),qe[ Cp (5 (@) =Cy (x,(2))
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Lemma 3.10: Let K bea Cp upper RNIof J. If, f'<g in J then

Co(%,) (N < Co (5,(8))3 Cr (1) () 2 Cr (1,(2)): Cr (5, ) () 2 C (,(8))-

Proof:

Let f<g inJ, then f*g=0

Ce(k)N< v maxiCy(k(p*q).Cr (K, (@) =maxiCy (x,(0)). v Cr(K(@)} =G (K, (2))
Celx)N= oA miniCy(k(p*9)),Cy (k()) =min{Cy (50)), A Co(s(@))}=Cp(i(2))

Cox, )Nz v min{Cy (1, (p*)), Cy (1, () )t =min{Cy (1,0~ Ci(x, (@) =C (x,(2))

Prrqelf15*gls.9¢€lg]s
Hence proved.

Theorem 3.11: Let Kbea C, lower (upper) RNI of J, then for any
0,,..0, € F;(.((f *v)*v,))*..)*v, =0 implies

a
~

=
A

~

)(f) 2 min{C, (x,(1))),Cp (5,(02)), Cp (5,(0,))}
) () < max{Cy (1,0)), C (,(0,)),0 G (1,(0,) )}
K‘f)(f)Smax{%(lff(ul)),_R(K'f(l)z)),..,_R(Kf(U”))}
)(f) < max{C, (x,(1,)), Cy (5,(0,)),.01, Ci (6, (0,) )}
K,) () = min{Cy (k,(1,)), Cp (K,(0,)) s C (K, (,) )}
Co (5, ) () 2 min{Cp (5, (1)), Cp (5,(0))eres Cp (5, (0,) )}

Proof:

A

D[22

=
A

~

N N /S /S

SIS

This proof is obvious from lemma 3.7, lemma 3.8, lemma 3.9 and lemma 3.10 by using induction on n.

Theorem 3.12: Every C, lower RNI of J isa C, lower RNSA of J.

Proof:
WK.T

Co()(f*2) 2 Co(,(8)): Co (1) (f *8) < Co (5(2)); Gy (6, ) (f x8) < C (i, ()).

Co(x)(f*0)2Ce(x ()2 A min{Cy(x(p*a)).Cu(x (D))

2minl p Cy(k(P)s A Calk (@) 2 minCy(x,(1).Co k()
Ce(k)(f*9)2C(x(@)s v max{Ci(x(p*q)),Ce(K(9))}

<max{ v Cy(k(p)s, v Colk @) SmaxiCy(x,())).Cy (k)

Co(x, )(f*2) < Cy(x,(2)) < v max{g(zc_,-(p*q)) Cy (%, (@)}

prqelf154gl5.9¢€lg]s
<max{ M C ( f(p)) R(Kf(Q))} X{C( f(f)) ( f(g))}

[ , ~
Hence proved.
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Theorem 3.13: Every C, upper RNI of 3 isa C, upper RNSA of J.
Proof:

Co () (f *2) < Cy(5,(2)): C (1) (f *8) = Cy (5,(2)): Co (1, ) (f *2) 2 C (1,(2))-
C(k)/*)2Co(r()s v maxiCy(x(p*9)).Cy(x (@)

p*qel f 154 gl5.9<€lg]s

<max{ v Cp(k.(p)), v Ca(K,(@)} <max{Cy(x,(/)), Ca (x,(2))}

Ce(k)(f*2)2Ce(x()= A miniCy(x, (%)), Cy (5 (q))
>min{ p Co(5,(0)), A ColK(9)=mintCy (5,(1)), Cr (,(2))}
Gl )(f*)<Calry (@)= A miniCy(x, (p*q)).C ( K (@)}

>min{ n Cy(x0(p)), A Colr, (@)= miniCy(1,(1)),Co (5, ()

Hence proved.
Theorem 3.14: Let K be a CR RNSA of J then K isa CR lower (upper) RNI of 3.

Proof:
By Theorem 3.12 and Theorem 3.13 the proof is obvious.

Theorem 3.15: Let K be a RNSA of J such thatVf,g,he T, f*g < h,and

A

)(f) 2 min{Cy (,(2)).Cy (5, () )}
)(f) S max{Cy (x,(2)), Cy (5, )}
K, ) () < max{Cy (x,(2)),Ca (1, (1))}
)(f) <min{Cp (x,(2)), Cp (,(h))}

) (f) 2 max{C, (x,(g)).Cy (,(h))}
( 1) ()= max{C, (x,(2)),Cy (x,())}

Then K is a RNI of S_

A

A

Cy
Cy

| SRR
A

Cu(%.)(0) 2 Cy (1) ()s(5:)(0) < Cy (1) (1) Ca (1, ) ) < C (1, ) ()
Co (%) (0) < Co (1) (1. )(0) 2 Cy (1) (f): G (5, ) (0) 2 Cy (1, ) ()

By hypothesis, we've for, f *(f *g) < g,
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Ce(x)(N2 A min{C, (x,(p*q)).Cr (x,(9))}

r*qel fls*gls.9€lg]s

= A min { A \min{&('f,((p*61)*r),ﬂ(’ft(r))},g('f,(q))}

prqel f154gl5.9€l gl (prq)*rel fls*gls*hls.relhls

> min {min{Cy (%, (1)}, Ca (x,(2))}
Ce)NS v maxdCy(k(pe).Ca (k@)

p*qel fl5*gl5.9€lg]s

< p*tié[f]s*\[/g];,qe[g]g maX{(p*q)*;e[f] *[\g] «[hy,relhly max{%(lc" ((p*q)*r),&(lq(r))},%(ic[(q))}
< max{max{C, (x,(h)}, Cy (%,(2))}

Culr )N v madiCy(x, (p*)).Cy (k@)
< p*qe[f]g*\[/g]s,qe[g]s mGX{(p*q)*rE[f] *[\g}s Hhls.relhls mGX{C ( ((p*q)*r) ( f(r))} C ( f(q))}

< max{max{%(lcf (h))},ﬁ(’ff (g))}
Also,

Ce(x)()S v ‘max{C (k,.(p*q)),Cr (x,(q))}

p*qel fls*gls.q€lg]s

= p*qel 15 *\[/g]J,qe[gh max{(ﬂ*q)*"é[.f]z*Fé/’]z #hly,.relhls max{CR (Kt ((p i q) " r) (K (r))} (K (q))}
< max{max{C, (x,(h))},C, (x,(g))}
Cy (Ki ) (= p*qe[f];*/[‘\g]:‘,qe[gh min{C, (Ki (p* ‘]))a Cy (Ki(Q))}
z I’*ﬂle[f]x*/[\g]:aqe[g]x mln{(ﬂ*q)*re[.f]x*@]x*[h]xa"e[h]x mln{CR (Ki ((p i q) * r) (K (r))} (K (q))}
> min {min{C, (1,(h))},Cy (x,(2))}
C_R(Kf)(f) % et gelee min{C_R<K/' (p *Q))’C_R(Kf(m)}
z prqelf 15 /[(\g] ,q€lgls min {(p*q)*rE[f]s *[/;]3*[h]3,r€[h]: min {CR (Kf ((p i Q) * 7’) ’ CR <Kf (1”))} ’ CR (Kf (q))}

> min min{C, (i, (1))}, Cy (c, (2))}

Therefore K isa RNI of 3 )

Iv. CONCLUSION

In this paper the concept of Rough neutrosophic ideal of BCK-algebra. is defined in this study. Also some of their
properties were examined and related proposition and theorems are proved. For further study these can be used to define
the concept other extension of BCK-algebra like implicative ideal, commutative ideal etc.
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