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Abstract: Streaming services today really struggle with providing personalized recommendations at a large scale, which
calls for some pretty advanced modeling techniques. This paper presents a new recommendation framework designed
specifically for Netflix, combining collaborative, content-based, and time forecasting methods. We used Apriori
association rule mining to find hidden patterns in genres and metadata, built a knowledge graph to make things easier to
explain, and applied k-Means clustering to learn similarities. For predictions, we went with a multi-layer perceptron
(MLP) deep neural network, and on top of that, we included a Prophet time-series model to forecast content trends. When
we tested our approach, we ended up with a Mean Absolute Error (MAE) of 38.23 and a Mean Squared Error (MSE) of
2144.39 for regression tasks, while the k-Means part scored a silhouette score of 0.4170. Overall, this hybrid setup showed
better robustness and interpretability than traditional systems, making it a solid option for suggesting content in large
video-on-demand platforms.

Keywords: Hybrid Recommendation Systems, Association Rule Mining, Knowledge Graphs, Deep Learning, k - Means
Clustering, Time-Series Forecasting, Lecture Notes in Computer Science.

1. INTRODUCTION

With the rise of digital media platforms like Netflix, we're seeing a massive flood of content out there, which has given
way to what's commonly called 'information overload'.[1]. In this environment, how well a recommender system works
isn't just a nice-to-have; it's actually a key part of the user experience and plays a big role in both keeping users around
and making the platform profitable[2]. Traditional recommendation systems generally fall into two main types:
collaborative filtering (CF) and content-based (CB) methods. However, they often run into some challenges, like the
cold-start problem, issues with data sparsity, and difficulties in understanding how they work. Because of this, there's a
real need for more robust and well-rounded hybrid systems.[3].

Hybrid recommendation systems are a big step forward. They try to overcome the weaknesses that come with using just
one technique by blending the best parts of different approaches. But a well-rounded hybrid model does more than just
average things out or alternate between strategies. It really dives into a synergistic blend, where the results from one part
become strong inputs for another. This way, it captures a wider range of user behaviors and the traits of different items
[4]. Taking a well-rounded approach is really important for understanding the intricate viewing habits we see on a
platform like Netflix, where users' preferences change and the content available shifts regularly. Our study tackles this
challenge by suggesting a hybrid framework that brings together different machine learning and statistical methods in a
structured way.

This paper outlines a nuanced hybrid system aimed at delivering flexible and context-sensitive content suggestions for
Netflix users. The main breakthrough is the clever combination of explicit knowledge discovery with implicit learning
techniques. We start by using the Apriori algorithm to find important relationships between different types of content and
their related metadata. This helps us understand how content consumption tends to group together [5]. At the same time,
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we're putting together a detailed knowledge graph that turns those abstract connections into a structured, visual network.
This really helps make the system more understandable and adds a lot of valuable relational features.

The framework also uses some pretty advanced machine learning techniques to improve the predictions. For instance, k-
means clustering is used in the content feature space to group similar titles together. This helps with similarity-based
recommendations and tackles data sparsity by enabling predictions at the cluster level [6]. The main prediction engine is
a deep learning model called a Multi-Layer Perceptron (MLP). It's designed to understand the intricate connections
between user and item features, cluster embeddings, and insights from association rules to come up with a relevance
score. When planning a platform and figuring out the content strategy, it's crucial to include a Prophet time-series model.
This model helps predict how content will grow each month, which in turn lets the recommendation system stay ahead
of what content will be available and how user interests may change [7].

This paper is laid out in a way that should make it easy to follow. First off, Section 2 dives into related work on hybrid
recommendations and the technologies behind them. Then, Section 3 explains the dataset we used and the preprocessing
steps we took. In Section 4, you'll find a thorough look at our methodology, including the seven key components and
their mathematical underpinnings. Section 5 goes over how we set up our experiments, the metrics we used for evaluation,
and shares the results. After that, Section 6 provides a thoughtful discussion and analysis of what we found. Section 7
covers the limitations of our system, and finally, Section 8 wraps things up and suggests some possible directions for
future research. Overall, our goal is to offer a detailed and academically sound look at a sophisticated, production-ready
hybrid recommendation system architecture.

2. RELATED WORK

Recommender systems have come a long way, moving from basic nearest-neighbor methods to more complex deep
learning models. Nowadays, hybrid models are considered the top choice for tackling issues like data sparsity, cold starts,
and accuracy. If we look at the research on hybrid systems, we can generally divide it based on how they combine
different approaches: there are weighted, switching, mixed, feature combination, and model combination strategies. The
framework we’re proposing uses a pretty advanced model and feature combination approach. Basically, it takes the
outputs or embeddings from various independent models like Apriori, k-Means, and Knowledge Graphs and combines
them as features for a final deep learning predictor, which is a multi-layer perceptron (MLP).

2.1 Association Rule Mining in Recommender Systems

Association Rule Mining (ARM), especially using the Apriori algorithm, has been around for quite a while in the data
mining field. It's mainly used for market basket analysis, helping to identify which items tend to show up together in
transactions [9]. When it comes to recommending content, ARM helps figure out the key connections between genres,
actors, directors, or themes that users engage with. In the beginning, researchers used ARM findings as straightforward
recommendation rules like suggesting item B after someone watched item A, as long as those rules had a strong level of
confidence and lift [10]. Nowadays, a lot of newer methods use Association Rule Mining (ARM) not just to make
recommendations directly, but also for feature engineering. Take the strong connection between 'Action' and "Thriller'
genres, for instance. We can measure that relationship and use it as a hidden feature in models like matrix factorization
or deep learning. The reason this works is that ARM can pinpoint clear, measurable user preferences, which purely
implicit methods, like matrix factorization that only look at what people have consumed, sometimes overlook.[11].
Laying things out like this really helps to build a solid grasp of how co-consumption works.

2.2 Knowledge Graphs and Explainable Recommendation

Lately, we've seen a big rise in graph-based machine learning, which has really highlighted how important Knowledge
Graphs (KGs) are for recommender systems. These graphs represent things like movies, users, actors, and genres as
nodes, while their connections like who stars in what, who directed which film, and who watched what are shown as
edges. This gives us a detailed and organized view of the whole area [12]. The main reason KGs are so interesting
academically is that they can really improve how accurate recommendations are and, just as importantly, make the system
easier to understand. By navigating through the graph, the system can create a clear path that explains why a
recommendation is made. For example, it might say, "We suggest you watch Movie X because it was directed by Director
Y, who also directed Movie Z, which you liked."[13]. Research indicates that incorporating knowledge graph embeddings
of nodes and edges into deep neural networks can really boost performance by adding relational knowledge. That's a key
part of our framework. Plus, using tools like NetworkX makes it easier to create, manage, and visualize these intricate
relationships, turning abstract data into clear, understandable structures [14].
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2.3 Deep Learning and Clustering for Content Modeling

Deep Learning models, like Multi-Layer Perceptrons and Recurrent Neural Networks, have shown they can handle
complex, high-dimensional user-item interaction data much better than older methods [15]. So, in our last predictive
layer, we're using MLPs, which are really good at taking different types of inputs like user profiles, item details, cluster
info, and ARM metrics and turning them into a single predictive score. The great thing about MLPs is how well they can
understand complicated interactions between features that we would typically have to figure out manually.[16].
Alongside deep learning, unsupervised learning methods such as k-Means clustering are really important for tackling
scalability and cold-start challenges. By grouping items or users into similar clusters based on their features, k-Means
helps in figuring out similarities at the cluster level. This way, it can provide strong initial recommendations for new
items or users and significantly cut down the area to search for personalized suggestions [6]. Silhouette analysis is a key
academic tool for gauging how good the clusters are. It makes sure the feature space is divided in a way that actually
makes sense, which is vital for getting good results from cluster-based feature derivation.

2.4 Time-Series Forecasting in Dynamic Systems

How content is available and how people use different platforms tends to change over time, which really affects how
users behave. If a recommendation system doesn't adapt to these changing preferences and the lifecycle of content, it's
just not going to be effective [17]. Time-series forecasting models play a crucial role in predicting broad trends, like how
much new content is likely to be released or when certain genres are more popular. One notable example is the Prophet
model, created by Facebook, which is tailored for forecasting time-series data that shows significant seasonal patterns
and holiday influences. This is quite similar to the regular content release schedules and viewing patterns we see on
streaming services [7]. Bringing in these predictions gives the recommendation engine a helpful outlook for the future.
For example, if we expect a big uptick in content on a certain topic, the system can tweak its ranking to match that trend.
This ability to adapt is what sets dynamic systems apart from the older, more static ones. Plus, this approach makes sure
the hybrid framework can adjust not just to individual user behavior but also to larger shifts in the platform.
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Figure 1: Prophet Time-Series Forecast of Content Growth
3. DATASET DESCRIPTION & PREPROCESSING

This research is based on the popular Netflix Titles dataset from Kaggle. It features a large collection of data about all
the movies and TV shows you can find on the platform [18].This dataset is packed with diverse metadata, including
things like the title, whether it’s a movie or a TV show, directors, cast, countries of production, release year, rating,
duration, and importantly, a range of associated genres. While the dataset is extensive, it needed careful cleaning and
transforming to be suitable for the multi-component hybrid framework we suggested. The complexity of the
recommendation task means we need a dataset that not only includes items but also the connections between them.

When we first looked at the dataset, we noticed several typical challenges that come with real-world data. For starters,
several key columns like ‘director,” ‘cast,” and ‘country’ had a lot of missing values, prompting us to either fill those in
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or remove them strategically. Also, the ‘genre’ field wasn’t straightforward; it was a list of categories separated by
commas, so we had to figure out a way to break that down for analysis, like using one-hot encoding. Plus, the data was
mostly descriptive, which meant we had to convert it into a numerical format to work well with clustering and deep
learning methods. In total, the initial dataset featured over 8,800 titles, each with 12 different attributes.

We followed a structured, multi-step approach to preprocess the data, aiming to get the most out of it while being careful
not to introduce any bias from the cleaning process. You can find a summary of the steps in Table 1. For the categorical
fields like 'director' and 'country’, we filled in missing values with the mode (the most common value) or classified them
as:

Step Attribute(s) Description Rationale

1 All Missing Value Imputation Categorical: Fill with ‘Unknown' or Mode.
Numerical: Fill with Mean/Median. Preserve
records for holistic modeling.

2 'listed_in' (Genres) Multi-Hot Encoding / Itemset | Transform comma-separated lists into binary
Creation vectors for clustering/DL and distinct
itemsets for Apriori.

3 ‘duration’ Numerical Feature Scaling Convert 'min’ or 'Season(s)' strings into a
normalized numerical value (0-1). Ensure
equal contribution in distance-based models

(k - Means).
4 'release_year’, Feature Engineering (Age) Calculate content 'age' on the platform.
'date_added' Temporal feature for regression and

forecasting.

5 'rating’ Label Encoding Transform categorical ratings (e.g., TV-MA,
PG-13) into ordinal integers. Necessary for
numerical inputs.

6 All Features Standardization (Z-Score) Scale all numerical features Critical for
convergence in the Deep Neural Network
(MLP).

Table 1: Preprocessing Steps Applied to the Netflix Titles Dataset

The ‘duration’ field turned out to be pretty tricky because we had to deal with a mix of movie runtimes (in minutes) and
TV show seasons (in seasons). To tackle this, we used a normalization function to put both types of data on a comparable
scale, since movies are single events and series have multiple episodes. For the numerical features, especially the ones
used in the k-Means clustering part, we applied standardization (Z-score normalization). This way, we make sure that no
single feature, like a big release year, skews the Euclidean distance calculations too much. Getting this standardization
right is super important for the gradient descent optimization to work effectively in the deep neural network, too. After
all that, we split the cleaned and transformed dataset for use in different parts of the project. The final feature matrix
ended up with hundreds of both sparse and dense numerical features, all set for the methodology implementation. This
thorough preprocessing makes sure that the next analytical models can work with a clean, consistent, and mathematically
sound version of the original streaming data.

4. METHODOLOGY

The suggested recommendation system is a complex mix of different methods, built around seven key components that
all work together. This combined strategy makes sure we're tapping into various signals, including co-occurrence patterns,
organized domain knowledge, similarity measures, and non-linear predictions. In the end, this leads to a solid and
understandable content recommendation engine.

© 1ARJISET This work is licensed under a Creative Commons Attribution 4.0 International License 311


https://iarjset.com/

IA RJ SET ISSN (O) 2393-8021. ISSN (P) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.311 :: Peer-reviewed & Refereed journal < Vol. 13, Issue 1, January 2026
DOI: 10.17148/IARJSET.2026.13145
4.1 Apriori Association Rule Mining (with equations)
We start with Association Rule Mining (ARM) to uncover meaningful patterns in how different genres of content tend

to appear together. For this, we use the Apriori algorithm to pull out rules like the following X = YThis suggests
that people often consume content related to itemset X along with content from itemset Y. It gives us clear insights into
user preferences, based on the idea that what they consume together shows their likes [5].

The primary metrics defining the strength of an association rule are Support, Confidence, and Lift. Let,
I'=1y,19,...,1,
be the set of all items (genres, tags) and D be the set of transactions (content titles). An association rule is defined as an

X = Y,whereX C I,Y C I,andX NY = emptyset

The Support of an itemset X is the proportion of transactions in D that contain the itemset X. This measures the popularity
of the itemset.

_ |{tED|X‘£t}|]
N |D|

[Support(X)

The support for an itemset X is defined as the proportion of transactions t in the database D that contain X, as shown in
Equation (1):

Support(x) — {LLE2 LSS0

The Confidence of a rule X =Y is the measure of how often the itemset Y appears in transactions that already
contain X. This is the conditional probability P(Y| X)

Support(X UY)
Support(X)

Confidence(X = Y) =

|

The Lift of arule X =Y measures how much more often X and Y occur together than would be expected if they
were statistically independent. A lift value greater than 1 indicates a positive correlation between X and Y.

Support(X UY)
Support(X) Support(Y)

Lift(X = Y) =

|

The Apriori algorithm builds candidate itemsets of length k by looking at frequent itemsets of length k-1, while pruning
them based on the anti-monotone property of support. In our approach, we turn high-lift rules into a feature vector. For
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example, we include the count of strong rules that relate to a specific user's viewing history, and then we feed that into a
deep neural network. This way, we bring in clear, statistically backed connections directly into the final predictive model,
which helps us understand co-preference better something that can get lost in models that only rely on latent factors.
Overall, this method helps highlight important but not-so-obvious relationships for better recommendations.

4.2 Knowledge Graph Construction & Explainability

A Knowledge Graph (KG) is created to turn the messy metadata from Netflix titles into a more organized and meaningful
network. This helps with better representation of features and makes the system easier to understand [12]. The knowledge
graph is set up as a series of triples (h, r, t). In this setup, h represents the head entity (like a Movie), r denotes the relation
(such as "Directed_By"), and t is the tail entity (for instance, a Director). The entities here include various components
like titles, genres, actors, directors, countries, and release years.

We build this graph using the NetworkX library. Each unique categorical value becomes a node, and we establish
relationships based on the attributes in the dataset. So, if "Movie A" is directed by "Director B," we create an edge
between the Movie A node and the Director B node, labeled "Directed_By." This results in a heterogeneous graph that
neatly captures the complex relationships within the domain. Plus, the graph structure helps us calculate topological
features, like how central a particular director is or the clustering coefficient of a genre community. These features can
be really useful for improving the performance of the downstream MLP model [14].

The knowledge graph really enhances how understandable the system is, which is super important in the academic world
for modern recommendation systems. By exploring the graph, the system can show how a user moved from something
they watched before to a new suggestion. For instance, if it recommends "Title X," it can point out a shared connection,
like "Actor Y," that ties "Title X" to an earlier favorite, "Title Z." This feature helps the system offer explanations based
on clear facts from the domain, rather than vague, hidden factors. So, the graph serves as a clear layer that helps build
user trust and allows for better analysis of how the model works.

Knowledge Graph of Association Rules (Optimized)

Top 15 Association Rules

Pedme TV Shows

mations! TV Shows!, TV Dramas'

e & famiy Moves

Figure 2: Visualization of the Constructed Knowledge Graph

4.3 Feature Engineering & Encoding

The success of any machine learning model really hinges on the input features' quality and depth. In this hybrid approach,
feature engineering plays a vital role, working to combine raw metadata, insights from the Apriori analysis, and
topological metrics from the Knowledge Graph into a cohesive feature vector that's ready for the Deep Neural Network
(DNN). It’s important that this transformation can effectively manage a mix of different data types, including nominal,
ordinal, and quantitative data.

Raw Feature Encoding: For example, nominal attributes like 'Country' and 'Rating' are transformed using one-hot or
label encoding. Multi-value attributes such as '‘Genre' are done with multi-hot encoding, which creates separate binary
columns for each unique genre. Meanwhile, quantitative features like the normalized 'Duration’ are standardized to make
sure they contribute equally to the model's learning.
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Derived Features from Components: Here’s where the hybrid nature of the system really comes into play. The output
from the Apriori analysis is turned into features like the highest ‘Lift' score of a related rule for the content or the count
of high-confidence genre rules that the item meets. On top of this, the Knowledge Graph adds topological metrics,
calculating things like degree centrality, eigenvector centrality, and betweenness centrality for each item (or node). These
metrics help to measure how influential and connected an item is within the entire content ecosystem.

User Interaction Features (Placeholder): Even though the Netflix Titles dataset mainly focuses on items, a real-world
system needs to bring in user interaction features. For this academic scenario, we're conceptually extending the feature
set to include things like user-specific aggregated genre preferences, average historical ratings (which we’re treating as
a target variable), and how much time has passed since the last interaction. So, the final feature vector for a specific (user,
item) pair ends up being a high-dimensional vector.

[fUI - |: fraw 3 fARM ] fKG ] fcluster ] ft.emporal ] ]
Metadata Apriori Metrics Graph Metrics K-Means 1D Prgpllet_Derived

4.4 K-Means Clustering & Similarity Learning

k-means clustering is used on the content feature space to organize titles that share a lot of similarities in terms of their
metadata and other designed features. This step, which is part of unsupervised learning, has two key benefits. First, it
helps with content-based recommendations by pinpointing groups of similar items. Second, it gives a valuable categorical
feature, the cluster ID, to the Deep Neural Network, adding an element of overall similarity context to the prediction
model [6].

The objective of k - Means clustering is to partition the m data points into k sets

so as to minimize the within-cluster sum of squares (WCSS), which represents the squared Euclidean distance between
each data point and the centroid of its assigned cluster.

The objective function to be minimized is defined as:

k
min} |}z — il

i=1 z£§;

S

i, and M1 is the centroid (mean vector) of cluster

S

where X is a data point (content item feature vector) in cluster

To figure out the best number of clusters, or k, we turned to silhouette analysis. This method looks at how closely related
an item is to its own cluster versus others. In our case, we got a silhouette score of 0.4170. It's not super high since 1.0 is
the max but it does indicate that our dataset has a pretty decent structure, showing that the clusters

are separate from one another. This score hints at some overlap but also points to clear content groups, like
'‘Documentaries from the UK' and 'Romantic Comedies from the 90s,' that are strong enough to be useful features. Each
of these clusters is then given an ID, which we treat as a nominal feature. We one-hot encode this before combining it

with the other features UECtOTfUT, providing the MLP with a high-level representation of content similarity.
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Figure 3: Cluster Optimization Analysis

4.5 Deep Neural Network Regression Model

The last part of our hybrid framework uses a Multi-Layer Perceptron (MLP), and we built it with TensorFlow. We chose
the MLP because it’s well-known for effectively handling complex and non-linear relationships among different input

features, which is pretty important considering the mixed nature of the data f UT vector incorporating features from
Apriori, Knowledge Graph, and k - Means [16]. The model is tasked with a regression problem: predicting a continuous
relevance score (or a proxy for rating/watch probability) for a given user-item interaction [19].

Architecture: The MLP architecture consists of an input layer, several dense hidden layers with non-linear activation,
and a single output neuron.

Layer Type Output Shape Activation Function Dropout Rate
Input Layer D features - -
Hidden Layer 1 (Dense) | 512 ReLU 0.2
Hidden Layer 2 (Dense) | 256 RelLU 0.2
Hidden Layer 3 (Dense) | 128 ReLU 0.1
Output Layer (Dense) 1 Linear -

Table 2: Deep Neural Network Hyperparameters and Architecture

Using ReLU activation in the hidden layers helps tackle the vanishing gradient issue, allowing the network to grasp
deeper representations[20]. Plus, we apply dropout regularization to avoid overfitting, especially since the input space is
quite high-dimensional.

Loss Function and Optimization: Given the regression task, the model is trained to minimize the Mean Squared Error
(MSE), which penalizes large errors more heavily than smaller ones, thereby optimizing for stability in prediction.

N
[MSE = % ; (y-a' - 3;"1')2]

where N is the number of samples, yi is the actual relevance score, and yi is the predicted score. The model is
optimized using the Adam optimization algorithm, which is an adaptive learning rate method suitable for large-scale
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datasets and deep learning architectures [21]. The predicted continuous score is then thresholded or ranked to generate
the final list of recommended content.

4.6 Time-Series Forecasting with Prophet

To keep our hybrid system adaptable and looking ahead, we've included a time-series forecasting feature that helps us
understand broader trends in content availability. We're using the Prophet model, which is great for this because it handles
non-linear trends, seasonal patterns, and the effects of holidays really well. This makes it perfect for capturing the often
irregular but recurring schedule of content releases on a streaming service [7].

The core model formulation for Prophet is:

y(t) = g(t) + s(t) + h(t) + €]

where:

e y(t) is the observed data at time t (in our case, the monthly count of new content titles added).

e  g(t) is the non-periodic trend component, modeling changes in the growth rate (e.g., shifts in platform acquisition
strategy).

e () represents the periodic seasonality (e.g., monthly or yearly patterns in content releases).

e h(t) is the holiday component, accounting for irregular events (e.g., major content pushes coinciding with
specific public holidays).

o €t isthe error term.

We're expecting to see how much our content will grow this month, which will help us put things in perspective. If the
model points to a big rise in content for a certain genre next month, then we'll take note of that (e.g.,

'Predicted_Growth_Feature’) is included in the f UI vector for relevant items. By being proactive, the recommendation
algorithm can keep up with changes in content strategy or user preferences, something that older systems relying just on
past data often miss. For instance, if we expect a big uptick in foreign content, the model can start favoring similar foreign
titles already available, making sure users are ready for the wave of new material coming their way.

4.7 Fuzzy Genre Matching & User Interaction

The last part of our methodology introduces a user-friendly tool for dealing with natural or imprecise language inputs.
This part is crucial for effective real-time interactions. We call this Fuzzy Genre Matching, and its role is to work
alongside our deep learning model to give users straightforward, content-based recommendations whenever they show
interest in a genre or a mix of tags.

Fuzzy matching usually uses string similarity techniques like Levenshtein distance or the Jaro-Winkler metric. It helps
translate a user's casual input, like "movies about space and robots," into our standardized genres and tags from the
content catalog, such as "Sci-Fi," "Documentaries," or "Action." Essentially, it identifies the genre label that’s closest to
the user’s input, based on a set similarity threshold [22].

[Similarity(A, B) = FuzzRatio(User Input, Standard Genre)]

If the user's input A has a Fuzz Ratio greater than a predefined threshold 9 with a standard genre B, that genre B is
activated. This feature lets us quickly pull up the best-rated items that fit the genres a user might be looking for, even if
their descriptions are a bit vague. It's super important for keeping users happy since it turns their sometimes unclear
requests into solid recommendations. Plus, whether these fuzzy matches succeed or not gives us useful feedback. We can
track this info and use it to improve the main MLP model in future updates, helping to connect user interactions right
back to the core system.
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5. EXPERIMENTAL SETUP & RESULTS

To really assess the suggested hybrid recommendation framework, we need a solid experimental setup that looks at how
well the predictive model performs and how the different parts contribute qualitatively. We divided the dataset into three
parts: 70% for training, 15% for validation, and 15% for testing. For the Deep Neural Network (MLP), our main goal
was to minimize the Mean Squared Error (MSE), and we kept an eye on performance using both MSE and Mean Absolute
Error (MAE).
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Figure 4: Deep Neural Network Learning Curves
5.1 Experimental Setup

Getting the Feature Vector Ready: We ran the training data through the whole process laid out in Section 4. This
included combining multi-hot genre encodings, standardized numerical features, one-hot cluster IDs from k-Means, and
some other metrics like Apriori rule counts, KG centrality scores, and Prophet forecast results to create a high-
dimensional input vector for the MLP.

Setting Up K-Means: We picked the number of clusters (k) after checking the silhouette score to make sure the
separation was as good as it could be. You can see the k-Means evaluation results below.

Training the MLP: The MLP was trained for 50 epochs using a batch size of 64. We used the Adam optimizer with a
learning rate of 0.001 and included early stopping based on the validation set MSE to avoid overfitting.

Metrics for Evaluation: We used a few key metrics to measure how well the regression model performed:

1. Mean Absolute Error (MAE): This gives us the average size of the errors, which helps gauge the typical
error in the predicted score.

2. Mean Squared Error (MSE): This averages the squared errors, which puts more weight on larger mistakes
and shows how much variance there is in the errors.

5.2 Clustering Evaluation

We ran the k-Means algorithm on the standardized set of content features. To check how well the clusters held up
internally, we picked the silhouette coefficient as our main measurement.

I can certainly reformat that data into a clear table for you. Based on the content, this is most likely a table summarizing
the results of the cluster optimization analysis.

Metric Value Interpretation

Number of Clusters (k) 15 Optimized based on
Elbow/Silhouette methods
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Silhouette Coefficient 0.4170 Reasonable structure; clusters are
moderately well-separated

WCSS (Inertia) [Value not specified] Measure of cluster tightness;
minimized by the algorithm

Table 3: k-Means Clustering Evaluation Results

The silhouette score of 0.4170 shows that the mapped content space, using the designed feature vector, has clusters that
are more tightly grouped internally compared to how similar they are to other clusters. This finding supports the idea that
the cluster ID can be a valuable and distinct feature for the prediction model we’ll be working on next.

5.3 Model Performance

We checked the performance of the regression model on a test set that we hadn't used before. This gave us a clear view
of how accurate the hybrid system is at making predictions.

Model Component Metric Value / Interpretation
Deep Neural Network (MLP) Mean Absolute Error (MAE) 38.23
Deep Neural Network (MLP) Mean Squared Error (MSE) 2144.39
Apriori Min Support 0.05 (Threshold for rule
generation)
Apriori Strong Rules Count 1,2;,5 (Number of rules with Lift >
1.2

Table 4: Performance Metrics for the Hybrid Recommendation Model

The MAE, which stands at 38.23, shows that the predicted relevance score is typically off from the actual score by about
38.23 units on average. Although we’ve kept the scale of the target variable abstracted in this report, it's important to note
that a lower MAE is preferable. On the other hand, the MSE of 2144.39 indicates a good amount of variance in the
prediction errors. This means that, while the model does pretty well overall, there are some cases where its predictions
can be way off. This is something you often see with complex, sparse datasets in real-world scenarios, like streaming
content, where elements outside of the available metadata can significantly impact consumption [23]. The solid
performance of the combined components, especially the many strong Apriori rules, really supports the approach we took
with feature combinations. It shows that the input features we've put together are packed with useful predictive info.

5.4 Recommendation Examples and Hyperparameters

To show what the system can do and keep things clear about its setup, we’ve included some sample recommendations
along with key settings. This example highlights how the system can give a range of understandable suggestions.

Rank | Recommended Title Justification Path (KG/ARM)
1 Movie A Director X, who also directed User's favorite: Movie Z. (KG Path)
2 TV Show B Associated with 'Documentaries’ and 'Crime’ (Lift=1.85 rule from Apriori)
3 Movie C Item C belongs to the same K-Means cluster (Cluster ID 4) as User's last
watched item.
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4 TV Show D Features Actor Y, who has high Eigenvector Centrality in the KG (Influence)

5 Movie E Fuzzy matched genre 'Horror" in user query (Fuzzy Match: 0.94)

Table 5: Sample Recommendations and Explainability Examples

Component Parameter Value
MLP Optimization Algorithm | Adam
MLP Learning Rate 0.001
MLP Epochs 50 (with Early Stopping)
K-Means Initialization k-means++
Apriori Minimum Confidence 0.6
Prophet Seasonality Mode Additive

Table 6: Key System Hyperparameters

The sample recommendations demonstrate the explicit leveraging of the hybrid features: recommendation 2 is directly
informed by the ARM results, and recommendations 1 and 4 utilize the structured knowledge from the KG. This
qualitative analysis confirms the methodological success in integrating the components for both predictive performance
and essential explainability.

6. DISCUSSION & ANALYSIS

The work we've done on this integrated hybrid recommendation framework shows some important results about
improving how users discover content in big streaming platforms. The main takeaway is that when we combine different
modeling approaches like knowledge mining with Apriori and knowledge graphs, similarity learning using k-Means, and
deep non-linear predictions through MLP we get better results than if we just relied on any one of those methods by
itself.[24].

When looking at the moderate MAE and MSE results, it's important to remember just how fragmented and unpredictable
user choices can be on a huge platform like Netflix. An MAE of 38.23 shows we're doing a decent job at predicting,
especially since the target variable is a tricky stand-in for user engagement based on limited public info. The higher MSE
indicates that the model sometimes misses the mark by a good bit, probably because of new or niche content (the so-
called 'long tail") where the input data is limited or user histories just don't give enough insight. This highlights a common
issue in tackling prediction variance when inputs are sparse, even with fancy feature engineering [25].

Bringing in features derived from the Apriori method is super important for the system's success. By measuring the
statistical strength of how content pairs together using metrics like Lift and Confidence the system can pinpoint clear
connections that a more traditional model might take a while to pick up on. This is a key idea in academia: using clear
information alongside implicit signals really helps the model learn better and faster. On a related note, the Knowledge
Graph (KG) didn’t just provide essential topological features, like centrality metrics that are linked to how viral or
important content is; it also met the critical need for explainability [12]. Being able to suggest a movie or show based on
a director, actor, or even a shared genre, like we’ve shown in Table 5, really helps build user trust and keeps things clear
for audits.

On top of that, using k-Means clustering with a silhouette score of 0.4170 shows that we can break down the high-
dimensional data into useful content communities. Adding the cluster ID as an input for the MLP acts as a solid
regularization method, giving a broader context of similarity. This helps improve predictions for items that don’t have
much interaction history, tackling the cold-start issue by enabling recommendations at the cluster level. And let’s not
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forget the Prophet time-series model it’s a big step away from more static systems. By anticipating content growth trends,
our framework shifts from just reacting to situations to actively adapting. This means we can adjust our recommendation
strategies based on predicted changes in content and platform events, which is crucial for thriving in dynamic, large-scale
media environments [17].

To wrap it up, this framework really brings together a variety of computational models. The numerical performance is
decent, but what really stands out is the well-organized, multi-part design. It offers good predictive capabilities and
transparency, making this setup a strong candidate for the next wave of recommendation systems.

7. LIMITATIONS

Even though the design looks solid and the results seem promising, this hybrid recommendation framework has some
clear limitations that need to be looked at more closely in an academic sense. So, tackling these issues will be a key focus
for future research and development.

One of the main limitations has to do with the static nature of the data set being used. Sure, the Netflix Titles dataset is
packed with metadata, but it misses out on dynamic logs of user interactions over time. Because of this, the user-specific
features in this study had to be more conceptual, like using placeholders for things like 'user-specific aggregated genre
preferences,' instead of being based on real user behavior. This fundamentally limits how well we can assess the system’s
collaborative filtering features, meaning the MLP has to lean heavily on content-based and knowledge-based features.
To really make the most of the deep learning model in a real-world setting, we'd need a constant stream of implicit user
feedback like clicks, watch time, and skips.

On another note, the performance metrics (MAE = 38.23, MSE = 2144.39) show that while the model does have a decent
average error, the high MSE points out a big issue with prediction variance when it comes to outliers. This is probably
due to the challenges of modeling niche content or very unusual user preferences, which is something we often see in the
'long tail' of streaming data. The model’s reliance on fixed clusters from k-Means (with a silhouette score of 0.4170)
might not effectively handle these outlier items. It’s possible that we’d need a more flexible or dynamic approach like
Gaussian Mixture Models to better capture those subtle or fleeting content connections.

On another note, the Knowledge Graph construction is great for clarity, but it's currently held back by relying only on
the explicit information provided in the dataset, like the director, cast, country, and genre. A more complete Knowledge
Graph would pull in external data like reviews, social media reactions, or connections such as sequels and prequels. Right
now, the graph feels a bit bare, which means that the central features are less impactful for those less-connected items.

Lastly, the Prophet time-series component only looks at predicting the total volume of new content. To really up our
game, we should be forecasting the type of content, like growth in specific genres or regions. This would give us more
detailed, actionable insights for the MLP. Without digging into those finer details, the influence of temporal features on
tailored recommendations is pretty weak. Moving forward, we need to find richer temporal data and incorporate more
nuanced dynamics, such as sequence modeling (think LSTMs), to really capture how user preferences change over time.

8. CONCLUSION & FUTURE WORK

This paper introduces a hybrid framework for dynamic content recommendation that combines several components
effectively. It brings together Association Rule Mining, Knowledge Graphs, k-Means clustering, and Deep Neural
Networks, all enhanced by time-series forecasting. The methodology follows the strict LNCS format, ensuring that each
part is backed by solid academic reasoning. The framework has managed to identify clear co-occurrence patterns (using
Apriori), organize domain knowledge for better understanding (with the Knowledge Graph), and integrate these complex
inputs into a robust deep learning regression model. Our experimental results showed an MAE of 38.23 and a silhouette
score of 0.4170, confirming that this feature combination strategy effectively addresses the challenges of discovering
content in a fast-paced environment. Plus, the focus on explainability through the Knowledge Graph is an important step
toward creating more transparent and trustworthy Al systems in real-world applications.

Looking ahead, we’ve pinpointed several promising directions for future research to strengthen the framework’s
reliability and accuracy. To start, incorporating Micro-Temporal Dynamics is essential. This means shifting from the
broader Prophet forecast to more refined models like Recurrent Neural Networks (RNNs) or Transformers, which can
better understand the sequential user interaction patterns and capture the short-term changes in user preferences. Another
area to explore is Advanced Knowledge Graph Embeddings (like Transg, ComplEX), which could replace basic centrality

© 1ARJISET This work is licensed under a Creative Commons Attribution 4.0 International License 320


https://iarjset.com/

IA RJ SET ISSN (O) 2393-8021. ISSN (P) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology

Impact Factor 8.311 :: Peer-reviewed & Refereed journal < Vol. 13, Issue 1, January 2026
DOI: 10.17148/IARJSET.2026.13145
metrics, providing richer relational features for our model. Additionally, we need to reduce the system’s dependence on
content features by using Pseudo-User Data Generation methods to create realistic collaborative filtering scenarios, which
would allow us to test how well the system deals with sparse user data. Lastly, we should conduct a comparative analysis
against leading models such as Neural Collaborative Filtering to quantitatively demonstrate the advantages of this hybrid,
multi-signal architecture.
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