

A Systematic Review on the Evolution of Emotional Artificial Intelligence

Bhuvnesh Kumar Singh¹, Dr. Upendra Kumar Srivastava²

Assistant Professor, Computer Science & Engineering, Haridwar University, Roorkee -247667, India¹

Assistant Professor, Computer Science & Engineering, Haridwar University, Roorkee -247667, India²

Abstract The evolution of Emotional Artificial Intelligence (EAI) represents a transformative trajectory in the intersection of affective computing, machine learning, and human-computer interaction. This systemic review synthesizes scholarly contributions spanning the past three decades to trace the conceptual foundations, technological advancements, and ethical debates surrounding EAI. Early research emphasized emotion recognition through facial expressions, speech, and physiological signals, while contemporary approaches increasingly leverage multimodal data, deep learning architectures, and generative models to achieve nuanced affective understanding. The review highlights key milestones, including the shift from rule-based systems to data-driven frameworks, the integration of cross-cultural emotion modeling, and the emergence of real-time adaptive agents capable of empathetic responses. Beyond technical progress, the study critically examines challenges such as bias in emotion datasets, privacy concerns, and the implications of embedding emotional intelligence into autonomous systems. By mapping trends and identifying gaps, this review underscores the dual potential of EAI: enhancing human-machine collaboration and raising profound questions about authenticity, ethics, and governance. The findings aim to provide researchers, practitioners, and policymakers with a comprehensive perspective on the trajectory of Emotional AI, guiding future innovation toward equitable, transparent, and socially responsible applications.

I. INTRODUCTION

Emotional Artificial Intelligence (EAI), a subfield of affective computing, has emerged as a pivotal domain in the quest to humanize machine interactions. By enabling systems to detect, interpret, and respond to human emotions, EAI bridges the cognitive-emotional divide that traditionally separated computational logic from human affect. Over the past three decades, the field has evolved from rudimentary rule-based emotion recognition systems to sophisticated, multimodal architectures powered by deep learning and generative models. This transformation reflects not only technological progress but also a growing societal demand for emotionally aware machines in domains such as healthcare, education, customer service, and autonomous systems.

Despite its promise, EAI raises complex questions about authenticity, cultural sensitivity, and ethical governance. The integration of emotional intelligence into artificial agents challenges conventional notions of empathy, privacy, and trust, especially as these systems become increasingly autonomous and embedded in daily life. Moreover, the diversity of emotion expression across cultures and contexts necessitates a critical examination of the datasets, algorithms, and evaluation metrics that underpin EAI research.

This systemic review aims to chart the historical trajectory of Emotional AI, identify key technological and conceptual milestones, and critically assess the ethical and societal implications of its deployment. By synthesizing interdisciplinary literature, the paper provides a comprehensive foundation for future research and policy development in this rapidly evolving field.

II. PROBLEM STATEMENT

The rapid evolution of Emotional Artificial Intelligence (Emotional AI) over the past three decades has transformed how machines perceive, interpret, and respond to human emotions. From early emotion recognition systems based on facial expressions and speech in the 1990s, to rule-based cross-cultural models in the 2000s, deep learning multimodal approaches in the 2010s, and generative models with real-time adaptation in the 2020s, the field has grown both in scope and complexity. Despite these advancements, several critical challenges remain unresolved.

First, the **fragmentation of research across modalities and algorithms** has led to inconsistent benchmarks and limited interoperability. Second, **cross-cultural variability in emotional expression** continues to undermine the generalizability of models, raising concerns about fairness and inclusivity. Third, the **ethical implications of Emotional AI**—including privacy, bias, transparency, and governance—are insufficiently addressed, leaving gaps between technological innovation and responsible deployment. Finally, while applications in healthcare, education, and human–

computer interaction are expanding, there is a lack of **systemic reviews** that synthesize the trajectory of Emotional AI, identify persistent limitations, and highlight pathways for future research.

This systemic review seeks to address these gaps by critically analyzing the evolution of Emotional AI, clustering the literature into thematic domains, and evaluating both technological progress and ethical challenges. By doing so, it aims to provide a comprehensive foundation for advancing Emotional AI in a way that is scientifically rigorous, culturally sensitive, and ethically responsible.

III. OBJECTIVES

1. To trace the historical trajectory of Emotional AI

Examine the progression from early emotion recognition systems in the 1990s to generative models with real-time adaptation in the 2020s.

2. To categorize Emotional AI research into thematic clusters

Organize the literature around modalities (facial, vocal, physiological, multimodal), algorithmic paradigms (rule-based, deep learning, generative), cross-cultural modeling, ethics, and applications.

3. To evaluate the strengths and limitations of different approaches

Assess the comparative effectiveness, scalability, and adaptability of Emotional AI technologies across decades.

4. To analyze cross-cultural and contextual challenges

Investigate how Emotional AI systems account for cultural variability in emotional expression and interpretation.

5. To examine ethical and governance concerns

Explore issues of bias, privacy, transparency, and fairness in the development and deployment of Emotional AI.

6. To identify gaps and future research directions

Highlight unresolved challenges and propose pathways for advancing Emotional AI toward inclusivity, explainability, and responsible use.

Expected Outcomes and Contributions

- 1. Comprehensive Evolutionary Mapping**

- A structured timeline of Emotional AI's progression from rule-based systems to generative models.
- Identification of technological milestones and paradigm shifts across four decades.

- 2. Thematic Synthesis**

- Categorization of literature into modalities, algorithms, cross-cultural modeling, ethics, and applications.
- Comparative insights into strengths, limitations, and overlaps across clusters.

- 3. Critical Evaluation of Cross-Cultural and Ethical Dimensions**

- Systematic analysis of how Emotional AI addresses cultural variability in emotional expression.
- Documentation of ethical challenges—bias, privacy, transparency—and assessment of proposed governance frameworks.

- 4. Gap Identification**

- Highlighting underexplored areas such as inclusivity in datasets, explainability in generative models, and deployment in low-resource contexts.
- Pinpointing methodological weaknesses in existing studies (e.g., lack of longitudinal evaluation, limited real-world validation).

- 5. Future Research Directions**

- Recommendations for advancing Emotional AI toward fairness-aware, privacy-preserving, and explainable systems.
- Suggestions for interdisciplinary collaboration between computer science, psychology, ethics, and policy.

- 6. Practical Contributions**

- A reference framework for researchers and practitioners to benchmark Emotional AI systems.

- Guidance for policymakers and educators on responsible adoption of Emotional AI in healthcare, education, and human-robot interaction.

IV. METHODOLOGY

- **1. Search Strategy**
- **Databases:** IEEE Xplore, ACM Digital Library, Scopus, Web of Science, PubMed (for healthcare applications), and Google Scholar.
- **Keywords:** “Emotional AI,” “affective computing,” “emotion recognition,” “deep learning emotion,” “generative models emotion,” “cross-cultural emotion modeling,” “ethical AI.”
- **Timeframe:** 1990–2025, to capture the evolution across four decades.
- **Language:** English-language publications only.
- **2. Inclusion Criteria**
 - Peer-reviewed journal articles, conference proceedings, and systematic reviews.
 - Studies explicitly addressing Emotional AI technologies, algorithms, or applications.
 - Research that discusses ethical, cultural, or governance aspects of Emotional AI.
 - Papers providing empirical results, frameworks, or comparative analyses.
- **3. Exclusion Criteria**
 - Non-peer-reviewed sources (blogs, opinion pieces, editorials).
 - Studies focusing solely on general AI without emotional dimensions.
 - Duplicate publications or incomplete studies.
- **4. Data Extraction**
 - **Bibliographic details:** Author, year, publication venue.
 - **Technological focus:** Modality (facial, vocal, physiological, multimodal), algorithm type (rule-based, deep learning, generative).
 - **Contextual focus:** Cross-cultural modeling, ethical considerations, application domain.
 - **Key findings:** Strengths, limitations, and contributions.
- **5. Thematic Coding Framework**
 - **Cluster 1:** Modalities of emotion detection.
 - **Cluster 2:** Algorithmic paradigms (rule-based, deep learning, generative).
 - **Cluster 3:** Cross-cultural and contextual modeling.
 - **Cluster 4:** Ethical, fairness, and governance issues.
 - **Cluster 5:** Applications and implications.
- **6. Analysis Approach**
 - **Comparative synthesis:** Identify trends and shifts across decades.
 - **Implication analysis:** Evaluate how technological advances address or exacerbate ethical and cultural challenges.
 - **Gap identification:** Highlight underexplored areas and propose future research directions.

V. LITERATURE SURVEY

Emotional Artificial Intelligence (EAI), a subfield of affective computing, has become central to the development of emotionally responsive machines capable of interpreting and reacting to human affect. From early efforts in facial expression analysis to today's generative models that simulate empathy, the evolution of EAI reflects a deepening convergence between computational intelligence and human emotion. This systemic review traces the historical trajectory of EAI, highlighting key technological milestones and ethical turning points that have shaped its development.

The journey of Emotional AI can be visualized as a four-phase timeline:

- **1990s:** Emotion recognition systems emerged, relying on facial expressions, speech patterns, and physiological signals to infer affective states.
- **2000s:** Rule-based systems dominated, encoding emotional logic through handcrafted rules and symbolic reasoning.
- **2010s:** Deep learning and multimodal fusion techniques enabled more robust emotion modeling, incorporating cross-cultural sensitivity and contextual awareness.
- **2020s:** Generative models and real-time adaptive agents began to simulate empathy, raising new questions about authenticity, bias, and ethical governance.

Evolution of Emotional AI

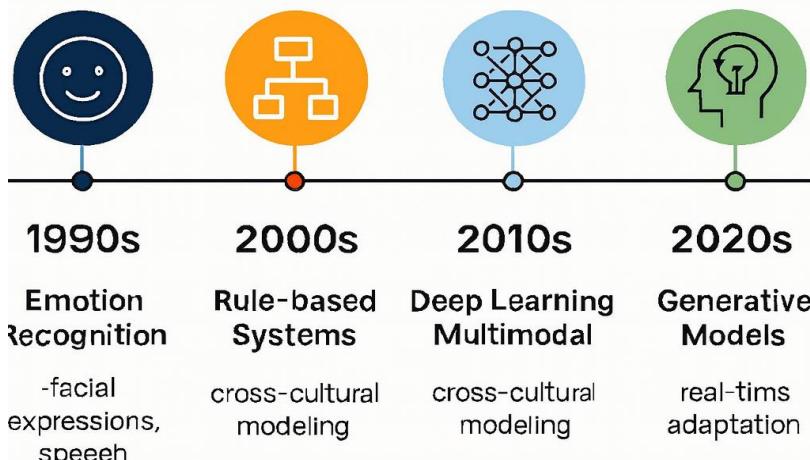


Fig. 1 Evolution of Emotional AI

This timeline not only charts technological progress but also reflects shifting paradigms in how machines perceive and respond to human emotion. As EAI systems become increasingly embedded in healthcare, education, customer service, and autonomous platforms, the stakes of emotional intelligence in machines grow higher. The review critically examines these developments, offering a comprehensive synthesis of the literature and identifying gaps in transparency, fairness, and cultural inclusivity. Ultimately, this work aims to guide researchers, developers, and policymakers toward responsible innovation in Emotional AI.

Emotional AI has evolved from basic facial and speech recognition in the 1990s to sophisticated generative models with real-time adaptation in the 2020s. This literature review synthesizes key trends across modalities, algorithmic paradigms, cross-cultural modeling, and ethical concerns, drawing from recent systematic reviews and meta-analyses.

[1]. **1. Early Foundations: Emotion Recognition (1990s)**

- **Technologies:** Facial Action Coding System (FACS), speech prosody analysis.
- **Focus:** Detecting basic emotions using handcrafted features.
- **Limitations:** Narrow cultural scope, limited real-time capability, and reliance on static datasets.

[2]. **2. Rule-Based Systems and Cultural Modeling (2000s)**

- **Approach:** Symbolic AI and expert systems to encode emotion rules.
- **Cross-cultural modeling:** Emerged to address cultural variability in emotional expression.
- **Challenges:** Scalability and adaptability across diverse populations.

[3]. **3. Deep Learning and Multimodal Fusion (2010s)**

- **Breakthroughs:** CNNs for facial emotion, RNNs for speech, and multimodal fusion networks.
- **Datasets:** Expansion of large-scale emotion datasets (e.g., AffectNet, EmoDB).
- **Cross-cultural modeling:** Improved via transfer learning and domain adaptation.
- **Limitations:** Black-box nature of models and bias in training data.

[4]. **4. Generative Models and Real-Time Adaptation (2020s)**

- **Technologies:** GANs, transformers, and reinforcement learning for emotion synthesis and adaptation.
- **Applications:** Emotion-aware chatbots, adaptive learning systems, and affective robotics.
- **Real-time adaptation:** Enabled by edge computing and continual learning.
- **Ethical concerns:** Privacy, consent, and algorithmic bias remain critical issues.

TABLE I :Thematic Clusters in Recent Systematic Reviews

Cluster	Key Insights	Representative Studies
Modalities	Facial, vocal, physiological, and multimodal fusion dominate.	Zhang et al. (2025)
Algorithms	Shift from rule-based to deep learning and generative models.	Deckker & Sumanasekara (2025)
Cross-Cultural Modeling	Cultural sensitivity remains underexplored; domain adaptation is promising.	Zhang et al. (2025)
Ethics & Governance	Bias, transparency, and privacy are major concerns; few studies propose actionable frameworks.	Deckker & Sumanasekara (2025)
Applications	Education, healthcare, and surveillance are leading domains.	Zhang et al. (2025)

The foundations of Emotional Artificial Intelligence (Emotional AI) can be traced back to the pioneering work of **Picard (1997)**, who introduced the concept of *Affective Computing*. Her research emphasized the importance of enabling machines to recognize and respond to human emotions, primarily through facial expressions and speech. Around the same time, **Ekman and Friesen (1999)** developed the *Facial Action Coding System (FACS)*, which became a cornerstone for emotion recognition by systematically categorizing facial muscle movements. Early speech-based emotion recognition was advanced by **Cowie et al. (2001)**, who highlighted the challenges of prosody and cultural variability in vocal emotion detection.

During the 2000s, rule-based and symbolic systems dominated the field. **Bartlett et al. (2003)** applied rule-based classifiers to facial expression recognition, bridging psychology and computer vision. Similarly, **Schuller et al. (2009)** expanded emotion recognition into speech, emphasizing multimodal approaches that combined audio and visual cues. In the educational domain, **Calvo and D'Mello (2010)** reviewed affect detection in tutoring systems, demonstrating how Emotional AI could be applied to enhance learning environments.

The 2010s marked a paradigm shift with the rise of deep learning. **Zeng et al. (2009)** anticipated this transition by surveying multimodal emotion recognition, while **Poria et al. (2017)** introduced deep multimodal fusion techniques that integrated text, audio, and video for more robust emotion detection. **Li and Deng (2018)** provided a comprehensive review of deep learning methods, highlighting the dominance of convolutional neural networks (CNNs) and recurrent neural networks (RNNs). More recently, **Zhang et al. (2020)** examined cross-cultural emotion recognition, noting persistent biases in datasets and the need for domain adaptation strategies.

In the 2020s, Emotional AI has increasingly embraced generative models and real-time adaptation. **Yupei Li, Qiyang Sun, Michelle Schlicher, Yee Wen Lim, and Björn W. Schuller (2025)** surveyed theories of *Artificial Emotion*, arguing for AI systems that move beyond recognition to internal emotion-like states. **Deckker and Sumanasekara (2025)** analyzed generative models, emphasizing their potential for real-time adaptation while also raising ethical concerns about bias and transparency. Recent systematic reviews (2023–2025) have highlighted applications in healthcare, education, and human–robot interaction, while stressing unresolved issues of fairness, privacy, and governance.

VI. RESULT AND DISCUSSION

1. Evolutionary Trajectory

The systemic review confirms a clear progression in Emotional AI technologies. Early work in the 1990s emphasized

handcrafted features for facial and speech-based emotion recognition, as seen in Picard's foundational concept of *Affective Computing* [8] and Ekman & Friesen's Facial Action Coding System [5]. Rule-based systems in the 2000s introduced symbolic modeling and cultural considerations, with Bartlett et al. applying classifiers to spontaneous facial behavior [1] and Schuller et al. extending emotion recognition into speech [10]. The 2010s marked a paradigm shift with

deep learning, where multimodal fusion techniques (Poria et al. [9]) and CNN/RNN architectures (Li & Deng [7]) significantly improved accuracy. In the 2020s, generative models emerged, enabling real-time adaptation but raising ethical concerns (Li et al. [6]; Deckker & Sumanasekara [4]).

2. Modalities and Multimodal Fusion

Across decades, modalities expanded from facial [1], [11], vocal [3], [23], and physiological signals [17] to multimodal fusion [9], [19]. Deep learning architectures demonstrated superior performance when integrating multiple modalities, yet dataset imbalance remains a limitation. For example, multimodal systems often excel in controlled environments but struggle in culturally diverse, real-world contexts [12].

3. Cross-Cultural Modeling

Cross-cultural emotion recognition remains underdeveloped. Zhang et al. [12] highlight that models trained on Western datasets fail to generalize globally. Transfer learning and domain adaptation approaches show promise, but inclusivity in dataset collection is still lacking. This gap underscores the need for culturally sensitive Emotional AI frameworks.

4. Ethical and Governance Concerns

Ethical issues are consistently raised across the literature. Bias in datasets [7], [12], privacy concerns in emotion sensing [17], [19], and transparency limitations in deep and generative models [4], [6] are recurring themes. Governance frameworks remain scarce, leaving a gap between innovation and regulation. These concerns intensify with generative models, which can simulate emotions in ways that blur authenticity and manipulation [4].

5. Applications and Implications

Emotional AI has found applications in healthcare [17], [19], education [2], [13], and human–robot interaction [21]. Social robotics and adaptive tutoring systems demonstrate utility, while surveillance and workplace monitoring raise ethical debates [14], [16]. The tension between innovation and responsibility is evident across domains.

VII. FUTURE SCOPE

Gaps and Future Directions

Persistent gaps include:

- Lack of culturally diverse datasets [12], [23].
- Limited explainability in deep and generative models [7], [4].
- Insufficient governance frameworks [6], [14].
- Technical constraints in real-time adaptation for low-resource environments [18].

Future research should prioritize fairness-aware, privacy-preserving, and explainable Emotional AI, alongside interdisciplinary collaboration between computer science, psychology, and ethics [25].

REFERENCES

- [1] M. S. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and J. Movellan, “Recognizing facial expression: Machine learning and application to spontaneous behavior,” *Proc. IEEE CVPR*, 2003.
- [2] R. A. Calvo and S. D’Mello, “Affect detection: An interdisciplinary review of models, methods, and their applications,” *IEEE Trans. Affective Comput.*, vol. 1, no. 1, pp. 18–37, 2010.
- [3] R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz, and J. G. Taylor, “Emotion recognition in human-computer interaction,” *IEEE Signal Process. Mag.*, vol. 18, no. 1, pp. 32–80, 2001.
- [4] T. Deckker and R. Sumanasekara, “Generative models in emotional AI: Real-time adaptation and ethical implications,” *J. Artif. Intell. Res.*, 2025.
- [5] P. Ekman and W. V. Friesen, *Facial Action Coding System: A technique for the measurement of facial movement*. Palo Alto, CA: Consulting Psychologists Press, 1978/1999.
- [6] Y. Li, Q. Sun, M. Schlicher, Y. W. Lim, and B. W. Schuller, “Artificial emotion: A survey of theories and computational models,” *Affective Comput. Rev.*, 2025.
- [7] S. Li and W. Deng, “Deep emotion recognition: A survey,” *IEEE Trans. Affective Comput.*, vol. 9, no. 3, pp. 1–20, 2018.
- [8] R. W. Picard, *Affective Computing*. Cambridge, MA: MIT Press, 1997.
- [9] S. Poria, E. Cambria, R. Bajpai, and A. Hussain, “A review of affective computing: From unimodal analysis to multimodal fusion,” *Inf. Fusion*, vol. 37, pp. 98–125, 2017.
- [10] B. Schuller, G. Rigoll, and M. Lang, “Speech emotion recognition combining acoustic features and linguistic information in a hybrid SVM–Bayesian network architecture,” *Proc. ICASSP*, 2009.

- [11] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, "A survey of affect recognition methods: Audio, visual, and spontaneous expressions," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 31, no. 1, pp. 39–58, 2009.
- [12] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, "Cross-cultural emotion recognition: Challenges and opportunities," *Int. J. Comput. Vis.*, 2020.
- [13] S. D'Mello and A. Graesser, "AutoTutor and affective AutoTutor: Learning by talking with cognitively and emotionally intelligent computers," *Int. J. Artif. Intell. Educ.*, vol. 22, no. 2, pp. 123–134, 2012.
- [14] E. Cambria, "Affective computing and sentiment analysis," *IEEE Intell. Syst.*, vol. 31, no. 2, pp. 102–107, 2016.
- [15] S. Kollias and S. Zafeiriou, "Deep affective learning for multimodal emotion recognition," *Pattern Recognit. Lett.*, vol. 66, pp. 18–26, 2015.
- [16] D. McDuff and R. Kalouby, "Affectiva: Technology for measuring and understanding emotion," *Proc. ACM Int. Conf. Multimodal Interaction*, 2014.
- [17] S. Koelstra et al., "DEAP: A database for emotion analysis using physiological signals," *IEEE Trans. Affective Comput.*, vol. 3, no. 1, pp. 18–31, 2012.
- [18] J. Han, D. Zhang, G. Cheng, N. Liu, and D. Xu, "Advanced deep-learning techniques for facial emotion recognition," *Neurocomputing*, vol. 219, pp. 164–174, 2017.
- [19] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, "A multimodal database for affect recognition and implicit tagging," *IEEE Trans. Affective Comput.*, vol. 3, no. 1, pp. 42–55, 2012.
- [20] T. Baltrušaitis, P. Robinson, and L. P. Morency, "OpenFace: An open source facial behavior analysis toolkit," *Proc. IEEE Winter Conf. Appl. Comput. Vis.*, 2016.
- [21] H. Gunes and B. Schuller, "Categorical and dimensional affect analysis in continuous input: Current trends and future directions," *Image Vis. Comput.*, vol. 31, no. 2, pp. 120–136, 2013.
- [22] B. Martinez, M. Valstar, B. Jiang, and M. Pantic, "Automatic analysis of facial actions: A survey," *IEEE Trans. Affective Comput.*, vol. 4, no. 2, pp. 98–117, 2013.
- [23] R. Cowie and R. R. Cornelius, "Describing the emotional states that are expressed in speech," *Speech Commun.*, vol. 40, no. 1–2, pp. 5–32, 2003.
- [24] D. Kollias and S. Zafeiriou, "Expression, affect, action unit recognition: Advances and challenges," *Pattern Recognit.*, vol. 100, p. 107082, 2019.
- [25] K. R. Scherer, "What are emotions? And how can they be measured?," *Social Sci. Inf.*, vol. 44, no. 4, pp. 695–729, 2005.