Abstract: Sign language is one of the oldest and most natural form of language for communication, hence we have come up with a real time method using neural networks for finger spelling based American sign language. Automatic human gesture recognition from camera images is an interesting topic for developing vision. We propose a convolution neural network (CNN) method to recognize hand gestures of human actions from an image captured by camera. The purpose is to recognize hand gestures of human task activities from a camera image. The position of hand and orientation are applied to obtain the training and testing data for the CNN. The hand is first passed through a filter and after the filter is applied where the hand is passed through a classifier which predicts the class of the hand gestures. Then the calibrated images are used to train CNN.

Keywords: Convolution Neural Network (CNN), American Sign Language (ASL), gesture recognition and deep learning technologies.


PDF | DOI: 10.17148/IARJSET.2025.12301

Open chat